236 research outputs found

    A survey of health care models that encompass multiple departments

    Get PDF
    In this survey we review quantitative health care models to illustrate the extent to which they encompass multiple hospital departments. The paper provides general overviews of the relationships that exists between major hospital departments and describes how these relationships are accounted for by researchers. We find the atomistic view of hospitals often taken by researchers is partially due to the ambiguity of patient care trajectories. To this end clinical pathways literature is reviewed to illustrate its potential for clarifying patient flows and for providing a holistic hospital perspective

    Taxonomic classification of planning decisions in health care: a review of the state of the art in OR/MS

    Get PDF
    We provide a structured overview of the typical decisions to be made in resource capacity planning and control in health care, and a review of relevant OR/MS articles for each planning decision. The contribution of this paper is twofold. First, to position the planning decisions, a taxonomy is presented. This taxonomy provides health care managers and OR/MS researchers with a method to identify, break down and classify planning and control decisions. Second, following the taxonomy, for six health care services, we provide an exhaustive specification of planning and control decisions in resource capacity planning and control. For each planning and control decision, we structurally review the key OR/MS articles and the OR/MS methods and techniques that are applied in the literature to support decision making

    The emergency observation and assessment ward

    Get PDF
    A recent development to reduce ED crowding and increase urgent patient admissions is the opening of an Emergency Observation and Assessment Ward (EOA Ward). At these wards urgent patients are temporarily hospitalized until they can be transferred to an inpatient bed. In this paper we present an overflow model to evaluate the effect of employing an EOA Ward on elective and urgent patient admissions

    A multilevel integrative approach to hospital case mix and capacity planning.

    Get PDF
    Hospital case mix and capacity planning involves the decision making both on patient volumes that can be taken care of at a hospital and on resource requirements and capacity management. In this research, to advance both the hospital resource efficiency and the health care service level, a multilevel integrative approach to the planning problem is proposed on the basis of mathematical programming modeling and simulation analysis. It consists of three stages, namely the case mix planning phase, the master surgery scheduling phase and the operational performance evaluation phase. At the case mix planning phase, a hospital is assumed to choose the optimal patient mix and volume that can bring the maximum overall financial contribution under the given resource capacity. Then, in order to improve the patient service level potentially, the total expected bed shortage due to the variable length of stay of patients is minimized through reallocating the bed capacity and building balanced master surgery schedules at the master surgery scheduling phase. After that, the performance evaluation is carried out at the operational stage through simulation analysis, and a few effective operational policies are suggested and analyzed to enhance the trade-offs between resource efficiency and service level. The three stages are interacting and are combined in an iterative way to make sound decisions both on the patient case mix and on the resource allocation.Health care; Case mix and capacity planning; Master surgery schedule; Multilevel; Resource efficiency; Service level;

    A modelling tool for capacity planning in acute and community stroke services

    No full text
    Background: Mathematical capacity planning methods that can take account of variations in patient complexity, admission rates and delayed discharges have long been available, but their implementation in complex pathways such as stroke care remains limited. Instead simple average based estimates are commonplace. These methods often substantially underestimate capacity requirements. We analyse the capacity requirements for acute and community stroke services in a pathway with over 630 admissions per year. We sought to identify current capacity bottlenecks affecting patient flow, future capacity requirements in the presence of increased admissions, the impact of co-location and pooling of the acute and rehabilitation units and the impact of patient subgroups on capacity requirements. We contrast these results to the often used method of planning by average occupancy, often with arbitrary uplifts to cater for variability. Methods: We developed a discrete-event simulation model using aggregate parameter values derived from routine administrative data on over 2000 anonymised admission and discharge timestamps. The model mimicked the flow of stroke, high risk TIA and complex neurological patients from admission to an acute ward through to community rehab and early supported discharge, and predicted the probability of admission delays. Results: An increase from 10 to 14 acute beds reduces the number of patients experiencing a delay to the acute stroke unit from 1 in every 7 to 1 in 50. Co-location of the acute and rehabilitation units and pooling eight beds out of a total bed stock of 26 reduce the number of delayed acute admissions to 1 in every 29 and the number of delayed rehabilitation admissions to 1 in every 20. Planning by average occupancy would resulted in delays for 1 in every 5 patients in the acute stroke unit. Conclusions: Planning by average occupancy fails to provide appropriate reserve capacity to manage the variations seen in stroke pathways to desired service levels. An appropriate uplift from the average cannot be based simply on occupancy figures. Our method draws on long available, intuitive, but underused mathematical techniques for capacity planning. Implementation via simulation at our study hospital provided valuable decision support for planners to assess future bed numbers and organisation of the acute and rehabilitation services. <br/
    corecore