1,106 research outputs found

    Active learning via query synthesis and nearest neighbour search

    Get PDF
    Active learning has received great interests from researchers due to its ability to reduce the amount of supervision required for effective learning. As the core component of active learning algorithms, query synthesis and pool-based sampling are two main scenarios of querying considered in the literature. Query synthesis features low querying time, but only has limited applications as the synthesized query might be unrecognizable to human oracle. As a result, most efforts have focused on pool-based sampling in recent years, although it is much more time-consuming. In this paper, we propose new strategies for a novel querying framework that combines query synthesis and pool-based sampling. It overcomes the limitation of query synthesis, and has the advantage of fast querying. The basic idea is to synthesize an instance close to the decision boundary using labelled data, and then select the real instance closest to the synthesized one as a query. For this purpose, we propose a synthesis strategy, which can synthesize instances close to the decision boundary and spreading along the decision boundary. Since the synthesis only depends on the relatively small labelled set, instead of evaluating the entire unlabelled set as many other active learning algorithms do, our method has the advantage of efficiency. In order to handle more complicated data and make our framework compatible with powerful kernel-based learners, we also extend our method to kernel version. Experiments on several real-world data sets show that our method has significant advantage on time complexity and similar performance compared to pool-based uncertainty sampling methods

    Cost-Quality Trade-Offs in One-Class Active Learning

    Get PDF
    Active learning is a paradigm to involve users in a machine learning process. The core idea of active learning is to ask a user to annotate a specific observation to improve the classification performance. One important application of active learning is detecting outliers, i.e., unusual observations that deviate from the regular ones in a data set. Applying active learning for outlier detection in practice requires to design a system that consists of several components: the data, the classifier that discerns between inliers and outliers, the query strategy that selects the observations for feedback collection, and an oracle, e.g., the human expert that annotates the queries. Each of these components and their interplay influences the classification quality. Naturally, there are cost budgets limiting certain parts of the system, e.g., the number of queries one can ask a human. Thus, to configure efficient active learning systems, one must decide on several trade-offs between costs and quality. The existing literature on active learning systems does not provide an overview nor a formal description of the cost-quality trade-offs of active learning. All this makes the configuration of efficient active learning systems in practice difficult. In this thesis, we study different cost-quality trade-offs that are pivotal for configuring an active learning system for outlier detection. We first provide an overview of the costs of an active learning system. Then, we analyze three important trade-offs and propose ways to model and quantify them. In our first contribution, we study how one can reduce classification training costs by training only on a sample of the data set. We formalize the sampling trade-off between classifier training costs and resulting quality as an optimization problem and propose an efficient algorithm to solve it. Compared to the existing sampling methods in literature, our approach guarantees that a classifier trained on our sample makes the same predictions as if trained on the complete data set. We can therefore reduce the classification training costs without a loss of classification quality. In our second contribution, we investigate how selecting multiple queries allows trading off costs against quality. So-called batch queries reduce classifier training costs because the system only updates the classifier once for each batch. But the annotation of a batch may give redundant information, which reduces the achievable quality with a fixed query budget. We are the first to consider batch queries for outlier detection, a generalization of the more common case to query sequentially. We formalize batch active learning and propose several strategies to construct batches by modeling the expected utility of a batch. In our third contribution, we propose query synthesis for outlier detection. Query synthesis allows to artificially generate queries at any point in the data space without being restricted by a pool of query candidates. We propose a framework to efficiently synthesize queries and develop a novel query strategy to improve the generalization of a classifier beyond a biased data set with active learning. For all contributions, we derive recommendations for the cost-quality trade-offs from formal investigations and empirical studies to facilitate the configuration of robust and efficient active learning systems for outlier detection

    GeoYCSB: A Benchmark Framework for the Performance and Scalability Evaluation of Geospatial NoSQL Databases

    Get PDF
    The proliferation of geospatial applications has tremendously increased the variety, velocity, and volume of spatial data that data stores have to manage. Traditional relational databases reveal limitations in handling such big geospatial data, mainly due to their rigid schema requirements and limited scalability. Numerous NoSQL databases have emerged and actively serve as alternative data stores for big spatial data. This study presents a framework, called GeoYCSB, developed for benchmarking NoSQL databases with geospatial workloads. To develop GeoYCSB, we extend YCSB, a de facto benchmark framework for NoSQL systems, by integrating into its design architecture the new components necessary to support geospatial workloads. GeoYCSB supports both microbenchmarks and macrobenchmarks and facilitates the use of real datasets in both. It is extensible to evaluate any NoSQL database, provided they support spatial queries, using geospatial workloads performed on datasets of any geometric complexity. We use GeoYCSB to benchmark two leading document stores, MongoDB and Couchbase, and present the experimental results and analysis. Finally, we demonstrate the extensibility of GeoYCSB by including a new dataset consisting of complex geometries and using it to benchmark a system with a wide variety of geospatial queries: Apache Accumulo, a wide-column store, with the GeoMesa framework applied on top

    Spatial Keyword Querying: Ranking Evaluation and Efficient Query Processing

    Get PDF

    Interactive Machine Learning with Applications in Health Informatics

    Full text link
    Recent years have witnessed unprecedented growth of health data, including millions of biomedical research publications, electronic health records, patient discussions on health forums and social media, fitness tracker trajectories, and genome sequences. Information retrieval and machine learning techniques are powerful tools to unlock invaluable knowledge in these data, yet they need to be guided by human experts. Unlike training machine learning models in other domains, labeling and analyzing health data requires highly specialized expertise, and the time of medical experts is extremely limited. How can we mine big health data with little expert effort? In this dissertation, I develop state-of-the-art interactive machine learning algorithms that bring together human intelligence and machine intelligence in health data mining tasks. By making efficient use of human expert's domain knowledge, we can achieve high-quality solutions with minimal manual effort. I first introduce a high-recall information retrieval framework that helps human users efficiently harvest not just one but as many relevant documents as possible from a searchable corpus. This is a common need in professional search scenarios such as medical search and literature review. Then I develop two interactive machine learning algorithms that leverage human expert's domain knowledge to combat the curse of "cold start" in active learning, with applications in clinical natural language processing. A consistent empirical observation is that the overall learning process can be reliably accelerated by a knowledge-driven "warm start", followed by machine-initiated active learning. As a theoretical contribution, I propose a general framework for interactive machine learning. Under this framework, a unified optimization objective explains many existing algorithms used in practice, and inspires the design of new algorithms.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147518/1/raywang_1.pd
    • …
    corecore