13,647 research outputs found

    DBpedia's triple pattern fragments: usage patterns and insights

    Get PDF
    Queryable Linked Data is published through several interfaces, including SPARQL endpoints and Linked Data documents. In October 2014, the DBpedia Association announced an official Triple Pattern Fragments interface to its popular DBpedia dataset. This interface proposes to improve the availability of live queryable data by dividing query execution between clients and servers. In this paper, we present a usage analysis between November 2014 and July 2015. In 9 months time, the interface had an average availability of 99.99 %, handling 16,776,170 requests, 43.0% of which were served from cache. These numbers provide promising evidence that low-cost Triple Pattern Fragments interfaces provide a viable strategy for live applications on top of public, queryable datasets

    Opportunistic linked data querying through approximate membership metadata

    Get PDF
    Between URI dereferencing and the SPARQL protocol lies a largely unexplored axis of possible interfaces to Linked Data, each with its own combination of trade-offs. One of these interfaces is Triple Pattern Fragments, which allows clients to execute SPARQL queries against low-cost servers, at the cost of higher bandwidth. Increasing a client's efficiency means lowering the number of requests, which can among others be achieved through additional metadata in responses. We noted that typical SPARQL query evaluations against Triple Pattern Fragments require a significant portion of membership subqueries, which check the presence of a specific triple, rather than a variable pattern. This paper studies the impact of providing approximate membership functions, i.e., Bloom filters and Golomb-coded sets, as extra metadata. In addition to reducing HTTP requests, such functions allow to achieve full result recall earlier when temporarily allowing lower precision. Half of the tested queries from a WatDiv benchmark test set could be executed with up to a third fewer HTTP requests with only marginally higher server cost. Query times, however, did not improve, likely due to slower metadata generation and transfer. This indicates that approximate membership functions can partly improve the client-side query process with minimal impact on the server and its interface

    Hypermedia-based discovery for source selection using low-cost linked data interfaces

    Get PDF
    Evaluating federated Linked Data queries requires consulting multiple sources on the Web. Before a client can execute queries, it must discover data sources, and determine which ones are relevant. Federated query execution research focuses on the actual execution, while data source discovery is often marginally discussed-even though it has a strong impact on selecting sources that contribute to the query results. Therefore, the authors introduce a discovery approach for Linked Data interfaces based on hypermedia links and controls, and apply it to federated query execution with Triple Pattern Fragments. In addition, the authors identify quantitative metrics to evaluate this discovery approach. This article describes generic evaluation measures and results for their concrete approach. With low-cost data summaries as seed, interfaces to eight large real-world datasets can discover each other within 7 minutes. Hypermedia-based client-side querying shows a promising gain of up to 50% in execution time, but demands algorithms that visit a higher number of interfaces to improve result completeness

    How Many and What Types of SPARQL Queries can be Answered through Zero-Knowledge Link Traversal?

    Full text link
    The current de-facto way to query the Web of Data is through the SPARQL protocol, where a client sends queries to a server through a SPARQL endpoint. Contrary to an HTTP server, providing and maintaining a robust and reliable endpoint requires a significant effort that not all publishers are willing or able to make. An alternative query evaluation method is through link traversal, where a query is answered by dereferencing online web resources (URIs) at real time. While several approaches for such a lookup-based query evaluation method have been proposed, there exists no analysis of the types (patterns) of queries that can be directly answered on the live Web, without accessing local or remote endpoints and without a-priori knowledge of available data sources. In this paper, we first provide a method for checking if a SPARQL query (to be evaluated on a SPARQL endpoint) can be answered through zero-knowledge link traversal (without accessing the endpoint), and analyse a large corpus of real SPARQL query logs for finding the frequency and distribution of answerable and non-answerable query patterns. Subsequently, we provide an algorithm for transforming answerable queries to SPARQL-LD queries that bypass the endpoints. We report experimental results about the efficiency of the transformed queries and discuss the benefits and the limitations of this query evaluation method.Comment: Preprint of paper accepted for publication in the 34th ACM/SIGAPP Symposium On Applied Computing (SAC 2019

    Efficient Query Processing for SPARQL Federations with Replicated Fragments

    Get PDF
    Low reliability and availability of public SPARQL endpoints prevent real-world applications from exploiting all the potential of these querying infras-tructures. Fragmenting data on servers can improve data availability but degrades performance. Replicating fragments can offer new tradeoff between performance and availability. We propose FEDRA, a framework for querying Linked Data that takes advantage of client-side data replication, and performs a source selection algorithm that aims to reduce the number of selected public SPARQL endpoints, execution time, and intermediate results. FEDRA has been implemented on the state-of-the-art query engines ANAPSID and FedX, and empirically evaluated on a variety of real-world datasets

    Substring filtering for low-cost linked data interfaces

    Get PDF
    Recently, Triple Pattern Fragments (TPFS) were introduced as a low-cost server-side interface when high numbers of clients need to evaluate SPARQL queries. Scalability is achieved by moving part of the query execution to the client, at the cost of elevated query times. Since the TPFS interface purposely does not support complex constructs such as SPARQL filters, queries that use them need to be executed mostly on the client, resulting in long execution times. We therefore investigated the impact of adding a literal substring matching feature to the TPFS interface, with the goal of improving query performance while maintaining low server cost. In this paper, we discuss the client/server setup and compare the performance of SPARQL queries on multiple implementations, including Elastic Search and case-insensitive FM-index. Our evaluations indicate that these improvements allow for faster query execution without significantly increasing the load on the server. Offering the substring feature on TPF servers allows users to obtain faster responses for filter-based SPARQL queries. Furthermore, substring matching can be used to support other filters such as complete regular expressions or range queries

    Continuous client-side query evaluation over dynamic linked data

    Get PDF
    Existing solutions to query dynamic Linked Data sources extend the SPARQL language, and require continuous server processing for each query. Traditional SPARQL endpoints already accept highly expressive queries, so extending these endpoints for time-sensitive queries increases the server cost even further. To make continuous querying over dynamic Linked Data more affordable, we extend the low-cost Triple Pattern Fragments (TPF) interface with support for time-sensitive queries. In this paper, we introduce the TPF Query Streamer that allows clients to evaluate SPARQL queries with continuously updating results. Our experiments indicate that this extension significantly lowers the server complexity, at the expense of an increase in the execution time per query. We prove that by moving the complexity of continuously evaluating queries over dynamic Linked Data to the clients and thus increasing bandwidth usage, the cost at the server side is significantly reduced. Our results show that this solution makes real-time querying more scalable for a large amount of concurrent clients when compared to the alternatives
    • …
    corecore