218 research outputs found

    Query-to-Communication Lifting for BPP

    Full text link
    For any nn-bit boolean function ff, we show that the randomized communication complexity of the composed function f∘gnf\circ g^n, where gg is an index gadget, is characterized by the randomized decision tree complexity of ff. In particular, this means that many query complexity separations involving randomized models (e.g., classical vs. quantum) automatically imply analogous separations in communication complexity.Comment: 21 page

    Query-To-Communication Lifting for BPP Using Inner Product

    Get PDF

    Proofs of Proximity for Distribution Testing

    Get PDF
    Distribution testing is an area of property testing that studies algorithms that receive few samples from a probability distribution D and decide whether D has a certain property or is far (in total variation distance) from all distributions with that property. Most natural properties of distributions, however, require a large number of samples to test, which motivates the question of whether there are natural settings wherein fewer samples suffice. We initiate a study of proofs of proximity for properties of distributions. In their basic form, these proof systems consist of a tester that not only has sample access to a distribution but also explicit access to a proof string that depends on the distribution. We refer to these as NP distribution testers, or MA distribution testers if the tester is a probabilistic algorithm. We also study the more general notion of IP distribution testers, in which the tester interacts with an all-powerful untrusted prover. We investigate the power and limitations of proofs of proximity for distributions and chart a landscape that, surprisingly, is significantly different from that of proofs of proximity for functions. Our main results include showing that MA distribution testers can be quadratically stronger than standard distribution testers, but no stronger than that; in contrast, IP distribution testers can be exponentially stronger than standard distribution testers, but when restricted to public coins they can be at best quadratically stronger

    Equality Alone Does not Simulate Randomness

    Get PDF
    The canonical problem that gives an exponential separation between deterministic and randomized communication complexity in the classical two-party communication model is "Equality". In this work we show that even allowing access to an "Equality" oracle, deterministic protocols remain exponentially weaker than randomized ones. More precisely, we exhibit a total function on n bits with randomized one-sided communication complexity O(log n), but such that every deterministic protocol with access to "Equality" oracle needs Omega(n) cost to compute it. Additionally we exhibit a natural and strict infinite hierarchy within BPP, starting with the class P^{EQ} at its bottom

    On the Pseudo-Deterministic Query Complexity of NP Search Problems

    Get PDF
    We study pseudo-deterministic query complexity - randomized query algorithms that are required to output the same answer with high probability on all inputs. We prove Ω(√n) lower bounds on the pseudo-deterministic complexity of a large family of search problems based on unsatisfiable random CNF instances, and also for the promise problem (FIND1) of finding a 1 in a vector populated with at least half one’s. This gives an exponential separation between randomized query complexity and pseudo-deterministic complexity, which is tight in the quantum setting. As applications we partially solve a related combinatorial coloring problem, and we separate random tree-like Resolution from its pseudo-deterministic version. In contrast to our lower bound, we show, surprisingly, that in the zero-error, average case setting, the three notions (deterministic, randomized, pseudo-deterministic) collapse

    Structure in Communication Complexity and Constant-Cost Complexity Classes

    Full text link
    Several theorems and conjectures in communication complexity state or speculate that the complexity of a matrix in a given communication model is controlled by a related analytic or algebraic matrix parameter, e.g., rank, sign-rank, discrepancy, etc. The forward direction is typically easy as the structural implications of small complexity often imply a bound on some matrix parameter. The challenge lies in establishing the reverse direction, which requires understanding the structure of Boolean matrices for which a given matrix parameter is small or large. We will discuss several research directions that align with this overarching theme.Comment: This is a column to be published in the complexity theory column of SIGACT New
    • …
    corecore