48,396 research outputs found

    Analysing Web Multimedia Query Reformulation Behaviour

    Get PDF
    Current multimedia Web search engines still use keywords as the primary means to search. Due to the richness in multimedia contents, general users constantly experience some difficulties in formulating textual queries that are representative enough for their needs. As a result, query reformulation becomes part of an inevitable process in most multimedia searches. Previous Web query formulation studies did not investigate the modification sequences and thus can only report limited findings on the reformulation behavior. In this study, we propose an automatic approach to examine multimedia query reformulation using large-scale transaction logs. The key findings show that search term replacement is the most dominant type of modifications in visual searches but less important in audio searches. Image search users prefer the specified search strategy more than video and audio users. There is also a clear tendency to replace terms with synonyms or associated terms in visual queries. The analysis of the search strategies in different types of multimedia searching provides some insights into user’s searching behavior, which can contribute to the design of future query formulation assistance for keyword-based Web multimedia retrieval systems

    Towards Query Logs for Privacy Studies: On Deriving Search Queries from Questions

    Get PDF
    Translating verbose information needs into crisp search queries is a phenomenon that is ubiquitous but hardly understood. Insights into this process could be valuable in several applications, including synthesizing large privacy-friendly query logs from public Web sources which are readily available to the academic research community. In this work, we take a step towards understanding query formulation by tapping into the rich potential of community question answering (CQA) forums. Specifically, we sample natural language (NL) questions spanning diverse themes from the Stack Exchange platform, and conduct a large-scale conversion experiment where crowdworkers submit search queries they would use when looking for equivalent information. We provide a careful analysis of this data, accounting for possible sources of bias during conversion, along with insights into user-specific linguistic patterns and search behaviors. We release a dataset of 7,000 question-query pairs from this study to facilitate further research on query understanding.Comment: ECIR 2020 Short Pape

    Query Formulation Assistance for Kids: What is Available, When to Help & What Kids Want

    Get PDF
    Children use popular web search tools, which are generally designed for adult users. Because children have different developmental needs than adults, these tools may not always adequately support their search for information. Moreover, even though search tools offer support to help in query formulation, these too are aimed at adults and may hinder children rather than help them. This calls for the examination of existing technologies in this area, to better understand what remains to be done when it comes to facilitating query-formulation tasks for young users. In this paper, we investigate interaction elements of query formulation–including query suggestion algorithms–for children. The primary goals of our research efforts are to: (i) examine existing plug-ins and interfaces that explicitly aid children’s query formulation; (ii) investigate children’s interactions with suggestions offered by a general-purpose query suggestion strategy vs. a counterpart designed with children in mind; and (iii) identify, via participatory design sessions, their preferences when it comes to tools / strategies that can help children find information and guide them through the query formulation process. Our analysis shows that existing tools do not meet children’s needs and expectations; the outcomes of our work can guide researchers and developers as they implement query formulation strategies for children

    Comparing Traditional and LLM-based Search for Image Geolocation

    Full text link
    Web search engines have long served as indispensable tools for information retrieval; user behavior and query formulation strategies have been well studied. The introduction of search engines powered by large language models (LLMs) suggested more conversational search and new types of query strategies. In this paper, we compare traditional and LLM-based search for the task of image geolocation, i.e., determining the location where an image was captured. Our work examines user interactions, with a particular focus on query formulation strategies. In our study, 60 participants were assigned either traditional or LLM-based search engines as assistants for geolocation. Participants using traditional search more accurately predicted the location of the image compared to those using the LLM-based search. Distinct strategies emerged between users depending on the type of assistant. Participants using the LLM-based search issued longer, more natural language queries, but had shorter search sessions. When reformulating their search queries, traditional search participants tended to add more terms to their initial queries, whereas participants using the LLM-based search consistently rephrased their initial queries

    Search log analysis method to uncover user search behaviour on web searching environment

    Get PDF
    User search behaviour was conceptualized as a strategy undertaken by the user in searching for information.Typically, searching activity on the web involved several steps; query formulation and reformulation, browsing the search results, and search results evaluation.The scope of this study has limited itself to query formulation that reflects the user search behaviour.The proposed method has been shown to successfully identify and classify user behaviour into two components namely; breadth search query and depth search query.The queries were initially recorded into search log through search interface.The search interface is one of the innovative tools that interface the Google search engine. Through this interface, user can enter the query and obtain the search results. In addition, the queries are also recorded for further analysis

    Search Process as Transitions Between Neural States

    Get PDF
    Search is one of the most performed activities on the World Wide Web. Various conceptual models postulate that the search process can be broken down into distinct emotional and cognitive states of searchers while they engage in a search process. These models significantly contribute to our understanding of the search process. However, they are typically based on self-report measures, such as surveys, questionnaire, etc. and therefore, only indirectly monitor the brain activity that supports such a process. With this work, we take one step further and directly measure the brain activity involved in a search process. To do so, we break down a search process into five time periods: a realisation of Information Need, Query Formulation, Query Submission, Relevance Judgment and Satisfaction Judgment. We then investigate the brain activity between these time periods. Using functional Magnetic Resonance Imaging (fMRI), we monitored the brain activity of twenty-four participants during a search process that involved answering questions carefully selected from the TREC-8 and TREC 2001 Q/A Tracks. This novel analysis that focuses on transitions rather than states reveals the contrasting brain activity between time periods – which enables the identification of the distinct parts of the search process as the user moves through them. This work, therefore, provides an important first step in representing the search process based on the transitions between neural states. Discovering more precisely how brain activity relates to different parts of the search process will enable the development of brain-computer interactions that better support search and search interactions, which we believe our study and conclusions advance

    Ranked Spatial-keyword Search over Web-accessible Geotagged Data: State of the Art

    Get PDF
    Search engines, such as Google and Yahoo!, provide efficient retrieval and ranking of web pages based on queries consisting of a set of given keywords. Recent studies show that 20% of all Web queries also have location constraints, i.e., also refer to the location of a geotagged web page. An increasing number of applications support location based keyword search, including Google Maps, Bing Maps, Yahoo! Local, and Yelp. Such applications depict points of interest on the map and combine their location with the keywords provided by the associated document(s). The posed queries consist of two conditions: a set of keywords and a spatial location. The goal is to find points of interest with these keywords close to the location. We refer to such a query as spatial-keyword query. Moreover, mobile devices nowadays are enhanced with built-in GPS receivers, which permits applications (such as search engines or yellow page services) to acquire the location of the user implicitly, and provide location-based services. For instance, Google Mobile App provides a simple search service for smartphones where the location of the user is automatically captured and employed to retrieve results relevant to her current location. As an example, a search for ”pizza” results in a list of pizza restaurants nearby the user. Given the popularity of spatial-keyword queries and their wide applicability in practical scenarios, it is critical to (i) establish mechanisms for efficient processing of spatial-keyword queries, and (ii) support more expressive query formulation by means of novel 1 query types. Although studies on both keyword search and spatial queries do exist, the problem of combining the search capabilities of both simultaneously has received little attention

    Graph search and beyond:SIGIR 2015 workshop summary

    Get PDF
    Modern Web data is highly structured in terms of entities and relations from large knowledge resources, geo-temporal references and social network structure, resulting in a massive multidimensional graph. This graph essentially unifies both the searcher and the information resources that played a fundamentally different role in traditional IR, and "Graph Search" offers major new ways to access relevant information. Graph search affects both query formulation (complex queries about entities and relations building on the searcher's context) as well as result exploration and discovery (slicing and dicing the information using the graph structure) in a completely personalized way. This new graph based approach introduces great opportunities, but also great challenges, in terms of data quality and data integration, user interface design, and privacy. We view the notion of "graph search" as searching information from your personal point of view (you are the query) over a highly structured and curated information space. This goes beyond the traditional two-term queries and ten blue links results that users are familiar with, requiring a highly interactive session covering both query formulation and result exploration. The workshop attracted a range of researchers working on this and related topics, and made concrete progress working together on one of the greatest challenges in the years to come
    • …
    corecore