7,521 research outputs found

    Protein Structure Data Management System

    Get PDF
    With advancement in the development of the new laboratory instruments and experimental techniques, the protein data has an explosive increasing rate. Therefore how to efficiently store, retrieve and modify protein data is becoming a challenging issue that most biological scientists have to face and solve. Traditional data models such as relational database lack of support for complex data types, which is a big issue for protein data application. Hence many scientists switch to the object-oriented databases since object-oriented nature of life science data perfectly matches the architecture of object-oriented databases, but there are still a lot of problems that need to be solved in order to apply OODB methodologies to manage protein data. One major problem is that the general-purpose OODBs do not have any built-in data types for biological research and built-in biological domain-specific functional operations. In this dissertation, we present an application system with built-in data types and built-in biological domain-specific functional operations that extends the Object-Oriented Database (OODB) system by adding domain-specific additional layers Protein-QL, Protein Algebra Architecture and Protein-OODB above OODB to manage protein structure data. This system is composed of three parts: 1) Client API to provide easy usage for different users. 2) Middleware including Protein-QL, Protein Algebra Architecture and Protein-OODB is designed to implement protein domain specific query language and optimize the complex queries, also it capsulates the details of the implementation such that users can easily understand and master Protein-QL. 3) Data Storage is used to store our protein data. This system is for protein domain, but it can be easily extended into other biological domains to build a bio-OODBMS. In this system, protein, primary, secondary, and tertiary structures are defined as internal data types to simplify the queries in Protein-QL such that the domain scientists can easily master the query language and formulate data requests, and EyeDB is used as the underlying OODB to communicate with Protein-OODB. In addition, protein data is usually stored as PDB format and PDB format is old, ambiguous, and inadequate, therefore, PDB data curation will be discussed in detail in the dissertation

    Runtime Adaptive Hybrid Query Engine based on FPGAs

    Get PDF
    This paper presents the fully integrated hardware-accelerated query engine for large-scale datasets in the context of Semantic Web databases. As queries are typically unknown at design time, a static approach is not feasible and not flexible to cover a wide range of queries at system runtime. Therefore, we introduce a runtime reconfigurable accelerator based on a Field Programmable Gate Array (FPGA), which transparently incorporates with the freely available Semantic Web database LUPOSDATE. At system runtime, the proposed approach dynamically generates an optimized hardware accelerator in terms of an FPGA configuration for each individual query and transparently retrieves the query result to be displayed to the user. During hardware-accelerated execution the host supplies triple data to the FPGA and retrieves the results from the FPGA via PCIe interface. The benefits and limitations are evaluated on large-scale synthetic datasets with up to 260 million triples as well as the widely known Billion Triples Challenge

    Visualizing the semantic content of large text databases using text maps

    Get PDF
    A methodology for generating text map representations of the semantic content of text databases is presented. Text maps provide a graphical metaphor for conceptualizing and visualizing the contents and data interrelationships of large text databases. Described are a set of experiments conducted against the TIPSTER corpora of Wall Street Journal articles. These experiments provide an introduction to current work in the representation and visualization of documents by way of their semantic content

    In-Memory Trajectory Indexing for On-The-Fly Travel-Time Estimation

    Get PDF

    Bipartite Graph Algorithm With Reference Frame Representation For Protein Tertiary Structure Matching

    Get PDF
    Proteins with structural resemblances tend to share similarities in biological functions. Protein dengan kesamaan struktur cenderung berkongsi fungsi biologi yang sama

    Secondary and Tertiary "Electronic" Souces of Information

    Get PDF
    A key to finding the primary sources of information is the secondary and tertiary sources of information. These sources in the electronic form started with the online information retrieval systems. They have since evolved from magnetic tapes to the microforms and then to the CD ROMs. Now these are also available as DVDs and on the Internet. These sources have become an inevitable part of a scholar or a researcher's or even a student's pursuit of information. This paper is an attempt to give an overall view of some of the "electronic" secondary and tertiary sources of information
    corecore