230,916 research outputs found
Efficient Scalable Accurate Regression Queries in In-DBMS Analytics
Recent trends aim to incorporate advanced data analytics capabilities within DBMSs. Linear regression queries are fundamental to exploratory analytics and predictive modeling. However, computing their exact answers leaves a lot to be desired in terms of efficiency and scalability. We contribute a novel predictive analytics model and associated regression query processing algorithms, which are efficient, scalable and accurate. We focus on predicting the answers to two key query types that reveal dependencies between the values of different attributes: (i) mean-value queries and (ii) multivariate linear regression queries, both within specific data subspaces defined based on the values of other attributes. Our algorithms achieve many orders of magnitude improvement in query processing efficiency and nearperfect approximations of the underlying relationships among data attributes
Scalable aggregation predictive analytics: a query-driven machine learning approach
We introduce a predictive modeling solution that provides high quality predictive analytics over aggregation queries in Big Data environments. Our predictive methodology is generally applicable in environments in which large-scale data owners may or may not restrict access to their data and allow only aggregation operators like COUNT to be executed over their data. In this context, our methodology is based on historical queries and their answers to accurately predict ad-hoc queries’ answers. We focus on the widely used set-cardinality, i.e., COUNT, aggregation query, as COUNT is a fundamental operator for both internal data system optimizations and for aggregation-oriented data exploration and predictive analytics. We contribute a novel, query-driven Machine Learning (ML) model whose goals are to: (i) learn the query-answer space from past issued queries, (ii) associate the query space with local linear regression & associative function estimators, (iii) define query similarity, and (iv) predict the cardinality of the answer set of unseen incoming queries, referred to the Set Cardinality Prediction (SCP) problem. Our ML model incorporates incremental ML algorithms for ensuring high quality prediction results. The significance of contribution lies in that it (i) is the only query-driven solution applicable over general Big Data environments, which include restricted-access data, (ii) offers incremental learning adjusted for arriving ad-hoc queries, which is well suited for query-driven data exploration, and (iii) offers a performance (in terms of scalability, SCP accuracy, processing time, and memory requirements) that is superior to data-centric approaches. We provide a comprehensive performance evaluation of our model evaluating its sensitivity, scalability and efficiency for quality predictive analytics. In addition, we report on the development and incorporation of our ML model in Spark showing its superior performance compared to the Spark’s COUNT method
Query-driven learning for predictive analytics of data subspace cardinality
Fundamental to many predictive analytics tasks is the ability to estimate the cardinality (number of data items) of multi-dimensional data subspaces, defined by query selections over datasets. This is crucial for data analysts dealing with, e.g., interactive data subspace explorations, data subspace visualizations, and in query processing optimization. However, in many modern data systems, predictive analytics may be (i) too costly money-wise, e.g., in clouds, (ii) unreliable, e.g., in modern Big Data query engines, where accurate statistics are difficult to obtain/maintain, or (iii) infeasible, e.g., for privacy issues. We contribute a novel, query-driven, function estimation model of analyst-defined data subspace cardinality. The proposed estimation model is highly accurate in terms of prediction and accommodating the well-known selection queries: multi-dimensional range and distance-nearest neighbors (radius) queries. Our function estimation model: (i) quantizes the vectorial query space, by learning the analysts’ access patterns over a data space, (ii) associates query vectors with their corresponding cardinalities of the analyst-defined data subspaces, (iii) abstracts and employs query vectorial similarity to predict the cardinality of an unseen/unexplored data subspace, and (iv) identifies and adapts to possible changes of the query subspaces based on the theory of optimal stopping. The proposed model is decentralized, facilitating the scaling-out of such predictive analytics queries. The research significance of the model lies in that (i) it is an attractive solution when data-driven statistical techniques are undesirable or infeasible, (ii) it offers a scale-out, decentralized training solution, (iii) it is applicable to different selection query types, and (iv) it offers a performance that is superior to that of data-driven approaches
The Flexible Group Spatial Keyword Query
We present a new class of service for location based social networks, called
the Flexible Group Spatial Keyword Query, which enables a group of users to
collectively find a point of interest (POI) that optimizes an aggregate cost
function combining both spatial distances and keyword similarities. In
addition, our query service allows users to consider the tradeoffs between
obtaining a sub-optimal solution for the entire group and obtaining an
optimimized solution but only for a subgroup.
We propose algorithms to process three variants of the query: (i) the group
nearest neighbor with keywords query, which finds a POI that optimizes the
aggregate cost function for the whole group of size n, (ii) the subgroup
nearest neighbor with keywords query, which finds the optimal subgroup and a
POI that optimizes the aggregate cost function for a given subgroup size m (m
<= n), and (iii) the multiple subgroup nearest neighbor with keywords query,
which finds optimal subgroups and corresponding POIs for each of the subgroup
sizes in the range [m, n]. We design query processing algorithms based on
branch-and-bound and best-first paradigms. Finally, we provide theoretical
bounds and conduct extensive experiments with two real datasets which verify
the effectiveness and efficiency of the proposed algorithms.Comment: 12 page
MonetDB/XQuery: a fast XQuery processor powered by a relational engine
Relational XQuery systems try to re-use mature relational data management infrastructures to create fast and scalable XML database technology. This paper describes the main features, key contributions, and lessons learned while implementing such a system. Its architecture consists of (i) a range-based encoding of XML documents into relational tables, (ii) a compilation technique that translates XQuery into a basic relational algebra, (iii) a restricted (order) property-aware peephole relational query optimization strategy, and (iv) a mapping from XML update statements into relational updates. Thus, this system implements all essential XML database functionalities (rather than a single feature) such that we can learn from the full consequences of our architectural decisions. While implementing this system, we had to extend the state-of-the-art with a number of new technical contributions, such as loop-lifted staircase join and efficient relational query evaluation strategies for XQuery theta-joins with existential semantics. These contributions as well as the architectural lessons learned are also deemed valuable for other relational back-end engines. The performance and scalability of the resulting system is evaluated on the XMark benchmark up to data sizes of 11GB. The performance section also provides an extensive benchmark comparison of all major XMark results published previously, which confirm that the goal of purely relational XQuery processing, namely speed and scalability, was met
- …
