Appl Intell (2018) 48:2546-2567
https://doi.org/10.1007/s10489-017-1093-y

@ CrossMark

Scalable aggregation predictive analytics

A query-driven machine learning approach

Christos Anagnostopoulos! - Fotis Savva! - Peter Triantafillou!

Published online: 12 December 2017
© The Author(s) 2017. This article is an open access publication

Abstract We introduce a predictive modeling solution that
provides high quality predictive analytics over aggregation
queries in Big Data environments. Our predictive method-
ology is generally applicable in environments in which
large-scale data owners may or may not restrict access to
their data and allow only aggregation operators like COUNT
to be executed over their data. In this context, our method-
ology is based on historical queries and their answers to
accurately predict ad-hoc queries’ answers. We focus on
the widely used set-cardinality, i.e., COUNT, aggregation
query, as COUNT is a fundamental operator for both inter-
nal data system optimizations and for aggregation-oriented
data exploration and predictive analytics. We contribute a
novel, query-driven Machine Learning (ML) model whose
goals are to: (i) learn the query-answer space from past
issued queries, (ii) associate the query space with local lin-
ear regression & associative function estimators, (iii) define
query similarity, and (iv) predict the cardinality of the
answer set of unseen incoming queries, referred to the Set
Cardinality Prediction (SCP) problem. Our ML model incor-
porates incremental ML algorithms for ensuring high qual-
ity prediction results. The significance of contribution lies
in that it (i) is the only query-driven solution applicable over
general Big Data environments, which include restricted-
access data, (ii) offers incremental learning adjusted for

>4 Christos Anagnostopoulos
christos.anagnostopoulos @ glasgow.ac.uk

Peter Triantafillou
peter.triantafillou @ glasgow.ac.uk

School of Computing Science, University of Glasgow,
Glasgow G12 8QQ, UK

@ Springer

arriving ad-hoc queries, which is well suited for query-
driven data exploration, and (iii) offers a performance
(in terms of scalability, SCP accuracy, processing time,
and memory requirements) that is superior to data-centric
approaches. We provide a comprehensive performance eval-
uation of our model evaluating its sensitivity, scalability and
efficiency for quality predictive analytics. In addition, we
report on the development and incorporation of our ML
model in Spark showing its superior performance compared
to the Spark’s COUNT method.

Keywords Query-driven predictive analytics - Predictive
modeling - Aggregation operators - Set cardinality
prediction - Regression vector quantization -
Self-organizing maps

1 Introduction

Recent R&D efforts in the modern big data era have
been dominated by efforts to accommodate distributed big
datasets with frameworks that enable highly quality and
scalable distributed/parallel data analyzes. Platforms such
as MapReduce [14], Yarn [29], Spark [32] and Mahout [22]
are nowadays commonplace. Predictive modeling [26], [23]
and exploratory analysis [2, 3, 6, 20] are commonly based
on statistical aggregation operators over the results of explo-
ration queries [4, 7]. Such queries involve large datasets
(which may themselves be the result of linking of other
different datasets) and a number of range predicates over
multidimensional data vectorial representation, structured,
semi- and unstructured data. High quality query-driven data
exploration and quality modeling is becoming increasingly
important in the presence of large-scale data since accu-
rately predicting aggregations over range predicate queries

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-017-1093-y&domain=pdf
mailto:christos.anagnostopoulos@glasgow.ac.uk
mailto:peter.triantafillou@glasgow.ac.uk

Scalable aggregation predictive analytics

2547

is a fundamental data exploration task [12] in big data sys-
tems. Frequently, data analysts, data scientists, and statisti-
cians are in search of approximate answers to such queries
over unknown data subspaces, which supports knowledge
discovery and underlying data function estimation. Imag-
ine exploratory and predictive analytics [9] based on a
stream of such aggregation operators over data subspaces
being issued, until the scientists/analysts extract sufficient
statistics or fit local function estimators, e.g., coefficient of
determination, product-moment correlation coefficient, and
multivariate local linear approximation over the subspaces
of interest.

In modern big data systems like Spark [32], often data to
be analyzed possibly extends over a large number of feder-
ated data nodes, perhaps even crossing different administra-
tion domains and/or where data owners (nodes) may only
permit restricted accesses (e.g., aggregations) over their
data. Similarly, in the modern big data era, large datasets are
often stored in the Cloud. Hence, even when access is not
restricted, accesses to raw data needed to answer aggregate
queries are costly money-wise. Quality predictive model-
ing solutions which are widely applicable, even in such
scenarios, are highly desirable.

Consider a d-dimensional data space x € R,

Definition 1 (Range Query) Let a d-dim. box be defined
by two boundary vectors [ay, ..., ad]—r and [by, ..., bd]T,
a; < b;, a;j, b;j € R. A range query is represented by the 2d-
dimensional vector q = [ay, b1, a2, by, ..., aq, bd]T where
a; and b; is lower and higher value, respectively, for the i-th
dimension. Query q is a hyper-rectangle with faces parallel
to the axes.

Definition 2 (Query Distance)! The normalized Euclidean
distance between queries q and ¢ is |lq — |2 =

«/;271 YL, (ai — a)* + (bi — b))*, where «/;271 is a normal-
ization factor since 0 < ||q — ¢'|l2 < +/2d.

Definition 3 (Answer Set Cardinality) Given a range query
q and a dataset B of data points x € R?, y € N is the
cardinality of the answer set of those x € B in the interior of
the hyper-rectangle defined by query q satisfying a; < x; <
b;, Vi.

The reader could refer to Appendix for a nomenclature.

The reason we focus on the COUNT aggregation operator
is that the answer Set Cardinality Prediction (SCP) of a mul-
tidimensional range query is a fundamental task, playing a

IWhen dealing with mixed-type data points, e.g., consisting of cate-
gorical & continuous attributes,we can adopt other distance metrics;
this does not spoil the generality of our solution.

central role in predictive modeling. With multidimensional
range queries, analysts define the subspaces in R? of interest
within the overall data space. High quality cardinality pre-
diction in such subspaces then becomes important for data
mining, data exploration, time series analysis, and big data
visualization tasks [9, 12] of data (sub)spaces of interest.

In predictive modeling, data scientists routinely define
specific regions of a large dataset that are worth explor-
ing and wish to derive and accurately predict statistics over
the populations of these regions. This amounts to the SCP
of the corresponding range queries. In addition to being
an important aggregation operator, in database systems
accurate cardinality prediction (which amounts to the well
known selectivity estimation problem) is explicitly used for
query processing optimization, empowering query optimiz-
ers to choose, for instance, the access plan which produces
the smallest intermediate-query results (which have to be
retrieved from disks and communicated over the network)
saving time, resource waste, and money (e.g., in Clouds).
Furthermore, SCP is a core operator in modern big data
frameworks. Notably, in Spark [32] one of the five funda-
mental actions defined is the so-called count action, which
is executed over the underlying raw data at each data node.

1.1 Motivation & research objectives

Well-established and widely adopted techniques for
Approximate aggregation-Query Processing (AQP) based
on sampling, histograms, self-tuning histograms, wavelets,
and sketches [13] have been proposed. Their fundamental
and naturally acceptable assumption is that the underlying
data are always accessible and available, thus it is feasi-
ble to create and maintain their statistical structures. For
instance, histograms [15] require scanning of all data to
be constructed and being up-to-date; the self-tuning his-
tograms [1] require additionally the execution of queries to
fine tune their statistical structures; the sampling methods
[16] execute the queries over the sample to extrapolate the
cardinality prediction result.

Consider now a big data environment, where a feder-
ation of data nodes store large datasets. There are cases
where the data access to these nodes’ data may be either
restricted, (e.g., government medical and DNA databases
and demographic and neighborhood statistic datasets). Fur-
thermore, many real-world large-scale data systems may
limit the number of queries that can be issued and/or charge
for excessive data accesses. For example, there may exist
per-IP limits (for web interface queries) or per developer key
limits (for API based queries). Even when the (daily) limit is
high enough, repeated executions actually have high mone-
tary cost (e.g., in cloud deployments), waste communication
overhead due to remote query execution, and computational
resources. The accessed data nodes can either fully execute

@ Springer

2548

C. Anagnostopoulos et al.

the queries (to produce exact results) or locally deploy an
AQP technique to produce estimates. In the latter case, we
must rely upon the SCP accuracy provided by the applied
traditional AQP technique. Hence, the cardinality prediction
accuracy is upper bounded by the predictability capability
of the AQP method.

The above discussion raises the following desiderata: it
is important to develop quality AQP techniques that:

— DI: are applicable to all data-environment scenarios
(restricted-access or not),

— D2: are inexpensive, i.e., avoid relying on excessive
querying of and communication with the data nodes,
while

— D3: offering high prediction accuracy, and

— D4: being prudent in terms of compute-network-store
resource utilization.

Let us consider an indicative baseline solution for AQP in
our environment. One approach is to store, e.g., locally to a
central node, all the AQP structures (e.g., histograms, sam-
ples, sketches, etc.) from a federation of data nodes. Thus,
we can simply locally access this node for SCP. Firstly, this
violates our first desideratum, as privacy issues emerge (data
access restrictions). Obviously, retaining all AQP structures,
provides one with the whole valuable information about the
underlying data (e.g., in the case of histograms, we obtain
the underlying probability data distribution p(x), while in
sampling methods we retain actual samples from the remote
datasets). Even, in cases where the local accesses to AQP
structures were secured (which is again subject to major
security concerns), we would have to cope with the prob-
lem of AQP structure updates. The maintenance of those
structures in the face of updates demands high network
bandwidth overhead, cost for data transfer (in a Cloud set-
ting), latency for communicating with the remote nodes
during updates of the underlying dataset at these nodes, and
scalability and performance bottleneck problems arise at the
central node. Therefore, this approach does not scale well
and can be expensive, violating our 2nd and 3rd criteria
above.

An alternative baseline solution would be to do away
with the central node and send the query to the data nodes,
which maintain traditional AQP statistical structure(s) and
send back their results to the querying node. As before,
this violates many of our desiderata. It is not applicable
to restricted-access scenarios (violating criterion 1) and
involves heavy querying of the data node (violating crite-
ria 2 and 4). Even if this was the case (by violating criteria
1, 2, and 4), the construction and maintenance of an AQP
structure would become a prohibited solution; we struggle
with huge volumes of data (data universe explosion phe-
nomenon; imagine only the creation of a multidimensional
histogram over 1 zettabyte). These facts help expose the

@ Springer

formidable challenges to the problem at hand, (a signifi-
cant problem for large-scale predictive analytics) which to
the best of our knowledge, has not been studied before. In
this work we study a query-driven SCP in a big data system
taking into consideration the above-mentioned desiderata.
Although significant data-centric AQP approaches for car-
dinality prediction have been proposed [13] a solution for
our intended environments of use is currently not available.

There are three fundamental pressures at play here. The
first pertains to the development of a solution for cardinal-
ity prediction that is efficient, and scalable, especially for
distributed scale-out environments, wherein extra commu-
nication costs, remote invocation techniques, and estimation
latency are introduced. The second pertains to the quality
of cardinality prediction results in terms of accuracy and
model fitting, where as we shall see traditional solutions
fall short. The third concerns the wide-applicability of a
proposed method, taking into account environments where
data accesses may be restricted, We propose a solution that
addresses all these tensions. Conceptually, its fundamental
difference from related works is that it is query-driven, as
opposed to data-driven, and is thus based on a ML model
(trained by a number of queries sent to a data node) and later
utilized to predict answers to new incoming queries.

The challenging aim of our approach is to swiftly pro-
vide cardinality prediction of ad-hoc, unseen queries while
(i) avoiding executing them over a data node, saving com-
munication and computational resources and money, and (ii)
not relying on any knowledge on the p(x), and any knowl-
edge about nodes’ data. Through our query-driven SCP, an
inquisitive data scientist, who explores data spaces, issues
aggregate queries, and discovers hidden data insights, can
extract accurate knowledge, efficiently and inexpensively.

1.2 Related work

Given a d-dim. data space x € R the holy grail approaches
focus on: (i) inspecting the (possibly huge) underlying
dataset and estimate the underlying probability density
function (pdf) p(x). Histograms (typically multidimen-
sional) as fundamental data summarization techniques are
the cornerstone, whereby the estimation of p(x) is highly
exploited for SCP of range queries, e.g., [1, 15]. The tra-
ditional methods of building histograms do not scale well
with big datasets. Histograms need to be periodically rebuilt
in order to update p(x) thus, exacerbating the overhead
of this approach. Central to our thinking is the observa-
tion that a histogram is constructed solely from data, thus
obviously being not applicable to our problem for the above-
mentioned reasons. Histograms are also inherently unaware
on the cardinality prediction requests, i.e., query patterns.
Their construction method rely neither on query distribu-
tion p(q) nor on joint p(q, y) but only on p(x). As a result,

Scalable aggregation predictive analytics

2549

such methods do not yield the most appropriate histogram
for a given p(q) [11]. The limitations of this method are also
well-known [27, 30].

To partially address some of the above limitations, prior
work has proposed self-tuning histograms (STHs) e.g., [1,
27]. The STHs learn a centrally stored dataset from scratch
(i.e., starting with no buckets) and rely only on the cardinal-
ity result provided by the execution of a query, referred to
as Query Feedback Records (QFR). STHs exploit the actual
cardinality from QFR and use this information to build and
refine traditional histograms. Formally, given a query q over
data with cardinality y, the methods of STHs estimate the
conditional p(x|y, q) since the main purpose is to construct
and tune a histogram conditioned on query patterns. Fun-
damentally, the limitations in STHs in our problem stem
from the fact that they estimate p(x|y, q), thus, having to
data access (in multidimensional STHs, at least one scan
of the set B is required), deal with the underlying data dis-
tribution and make certain assumptions of the statistical
dependencies of data.

Other histogram-based cardinality prediction methods
utilize wavelets [31] or entropy-based [28]; the list is not
exhausted. Briefly, the idea is to apply wavelet decomposi-
tion to the dataset to obtain a compact data synopsis based
on the wavelet coefficients. By nature, wavelets-based AQP
relies on the synopsis construction over data thus could not
be applied to our problem. Overall, STHs and the other
advanced histogram-based approaches, are associated with
data access for estimating p(x) or any other p(x|q,...)
thus not applicable in our problem. Sampling methods [16]
have been also proposed for SCP. They share the common
idea to evaluate the query over a small subset of the dataset
and extrapolate the observed cardinality. Finally, another
approach for AQP answering to SCP is data sketching; we
refer the reader to [13] for a useful survey of sketching
techniques. Sketching algorithms construct estimators from
the raw data and yielding a function of these estimators
as the answer to the query. Therefore, as discussed above,
we neither have access to data nor to a sample of them,
thus yielding the data sketching and sampling methods
inapplicable to our problem.

In conclusion, the data-centric approaches in related
work are not applicable to our problem since they require
explicit access to data to construct their AQP structures
and maintain them up-to-date. For this reason, our proposed
solution to this novel setting is query-driven.

Our model can be highly useful when it is very costly (in
time, money, communication bandwidth) to execute aggre-
gation operators over the results of complex range queries
(including joins of datasets and arbitrary selection predi-
cates), when data are stored at the cloud, or at federations
of data stores, across different administration domains, etc.
And, to our knowledge, it is the only approach that can

address this problem setting. It is worth noting that this
paper significantly extends our previous work presented in
[5]. The interesting reader could refer to [5] to assess the
performance of our solution with respect to traditional data-
centeric (AQP) systems for cardinality prediction namely
with multidimensional histograms, popular self-tuning his-
tograms, and sampling methods. In [5], through comprehen-
sive experiments we showed that the query-driven approach,
which extracts knowledge from the issued queries and
corresponding answers, provides higher cardinality predic-
tion accuracy and performance, while being more widely
applicable. Based on the scalability and efficiency of this
approach, we further generalize our model in [5] and imple-
ment generalized ML algorithms within the most popular
big data system, Spark. Specifically, the major differences
of the proposed generic ML model discussed in this paper
with that of our paper in [5] are:

— We propose a generalization of the ML model in [5] by
introducing (i) associative local linear regression mod-
els for cardinality prediction and (ii) the concept of the
coefficients lattice in self-organizing maps statistical
learning algorithm;

— We provide the theoretical analysis and convergence of
the learning algorithms of the generalized ML model
(Theorems 2 and 4);

— We implement our ML model within the Spark system;

— We provide comprehensive experiments showing the
quality of prediction of our ML model through a variety
of evaluation metrics.

— We experiment with the scalability performance of our
ML model compared with the Spark’s COUNT method
for answer-set cardinality estimation.

1.3 Organization

The structure of the paper is as follows: Section 2 reports
on the rationale of our approach and the research chal-
lenges for the SCP, while summarizes the contribution and
our research outcome. In Section 3, we provide prelim-
inaries for unsupervised & heteroassociative competitive
statistical learning and the self-organizing maps along with
the problem formulation for SCP. Section 4 provides the
set cardinality learning methodology, the machine learn-
ing algorithms over the novel introduced lattice concepts
and the fundamental convergence theorems of our neuron-
based model. In Section 5 we provide an implementa-
tion of our model in the Spark system, while Section 6
reports on a comprehensive performance and comparative
assessment with the build-in Spark COUNT over real large-
scale datasets introducing different experimental scenarios.
Finally, Section 7 concludes the paper with future research
directions.

@ Springer

2550

C. Anagnostopoulos et al.

2 Challenges & overview

Our approach is query-driven. The first requirement (and
challenge) of our approach is to incrementally learn the
query patterns p(q) at any time, thus being able to (i) detect
possible changes to user interests on issuing queries and (ii)
reason about the similarity between query patterns. The sec-
ond requirement (and challenge) is to learn the association
q — y between a query q and its cardinality y, i.e., p(y|q),
thus being able to predict the cardinality. The third require-
ment (and challenge) is to learn such association without
relying on the underlying p(x) which in our case is totally
unknown and inaccessible. The fourth requirement (and
challenge) is to update p(q) and p(q, y) based on changes
in query patterns and to data. Query distributions are known
to be non-uniform, with specific portion of the data space
being more popular. However, query patterns change with
time, reflecting changes of users interests to exploring dif-
ferent sections of the datasets of nodes. Hence, we must
swiftly adapt and learn on-the-fly the new query patterns,
updating p(q, y) and p(q). Furthermore, updates on the
underlying datasets of nodes can independently occur, alter-
ing p(x). We must also deal with such mutations, implying
the need to maintain the current ¢ — y association, sub-
ject to updates of the underlying data. We require a model
to meet the above-mentioned requirements.

2.1 Overview of COUNT predictive learning

Consider a set Q = {(q;, y;)};_, of training pairs and a new
query q with actual result y. Our major aim is to predict its
result ¥ using only Q without executing q. Let us discuss
some baseline solutions:

A first idea is to keep all pairs (q;, y;) and given q we
find the most similar query q; with respect to Euclidean
distance and predict § = y;, with (q;, y;) € Q. We can
also involve the k closest queries to q and average their car-
dinality values, i.e., k-nearest neighbors regression, as will
be further analyzed later. The major problems here are: (i)
we must store and search all previous pairs for each new
query; Q can be huge. Deciding which pairs to discard is
not a trivial task (a new pair might convey useful informa-
tion while another new one might be a redundant / repeated
query); (ii) when data change (updates on raw data), which
impacts the query results, it is not trivial to determine which
pairs from Q and how many to update. Even worse, all pairs
may need updating; (iii) when query patterns change (new
user interests), then there may be many pairs in Q that will
not contribute to cardinality prediction (the new queries are
actually far distant to the previous ones) or even negatively
impact the final result.

To avoid such problems we extract knowledge from Q
as to how query and cardinality depend on each other. We

@ Springer

could cluster similar queries given the Euclidean distance,
thus forming a much smaller set £ of representative (pro-
totype) queries w with [£| <« |Q)|. For instance, w € L
can be the centroid of those queries from Qy C Q with
distances from w be the smallest among all other repre-
sentatives. However, we are not just interested in clustering
Q. We should partition Q aiming at cardinality prediction.
An approach could be to assign to each w; € L a ‘repre-
sentative’ cardinality value, e.g., the average cardinality of
those queries that belong to Qy,. Once this assignment is
achieved, we only keep £ and discard Q.

Nonetheless, our requirements include incremental learn-
ing of the query space in light of cardinality prediction.
We require an adaptive clustering algorithm that incremen-
tally, i.e., with only one pass of Q, quantizes Q but also
with respect to minimizing the prediction error. Also, the
adoption of an on-line quantization algorithm, like on-line
k-means is not directly applicable in our case as we don’t
wish to simply quantize the query space; we explicitly
require quantization of the query space in light of cardinal-
ity prediction. Moreover, on-line regression methods, e.g.,
incremental regression trees [17], on-line support vector
regression [24], could not fulfill all requirements. This is
because, we also deal with the fact that queries are con-
tinuously observed, conveying the way users are interested
in data exploration. The capability of the model to adapt
to such changes requires explicit information on accessing
the very specific regions of the query patterns space; this is
neither easily provided nor supported by incremental regres-
sion methods. Moreover, the problem here is not only to
adapt to changes on the query patterns but to decide which
and how representative(s) or regions of the query patterns
space to update upon data and/or query updates.

2.2 Contribution & research outcome

We introduce a novel and scalable Machine Learning (ML)
model M that incrementally extracts information about the
q — Yy association by learning p(q) and, in parallel, p(y|q).
Once trained, model M predicts the cardinality of an unseen
query without requesting its execution. The major technical
contributions are:

— a prediction error-driven, associative local regression
model for predicting the aggregate results of range queries.

— theoretical analysis of convergence of our machine
learning algorithms over large-scale squared and abso-
lute loss minimization.

— implementation of our algorithms in the Spark system.

— comprehensive experimental results analyzing the per-
formance of our model and showcasing its benefits
vis-a-vis the data-centric Spark’s COUNT method for
set-cardinality estimation.

Scalable aggregation predictive analytics

2551

3 Preliminaries & problem formulation
3.1 Preliminaries

We overview the essentials of our ML model, namely
Unsupervised Competitive Learning (UCL) [21] and Het-
eroassociative Competitive Learning (HCL) [19].

3.1.1 Unsupervised competitive learning

UCL partitions a query pattern space R>? characterized by
an unknown p(q), q € R??. A prototype or neuron w j rep-
resents a local region of R?. UCL distributes M neurons
Wi, ..., wy in R? to approximate p(q). A UCL model
learns as w; changes in response to random training pat-
terns. Competition selects which w; the training pattern q
modifies. Neuron w; wins if it is the closest (based on 2-
norm distance ||q — w;l|2) of the M neurons to q. During
the learning phase of UCL, patterns q are projected onto
their winning neurons, which competitively and adaptively
move around the space to form optimal partitions that mini-
mize the quantity [|lq — w; ||% p(q)dq with winning neuron
w;: |lw; — qll2 = min; ||w; — g|l2. The neurons upon a ¢-th
training pattern q are incrementally updated as follows:

ij = B(1) (q—Wj) and Aw; =0, if i # j, (1

where learning rate 8(¢) € (0, 1] slowly decreases with the
update step.

3.1.2 Kohonen’s self-organizing maps

Kohonen’s self-organizing maps (SOM) [19] is an advanced
variant of a UCL, in which w; corresponds to the j-th posi-
tion r; = [rji,rj2] of a 2-dim. square lattice/matrix £
(we notate w; € L£). In SOM, neurons that are topologi-
cally close in the lattice correspond to patterns that are also
closein R?. This way a ropographic mapping is learned
between query pattern and lattice space. This is achieved by

Fig. 1 a A Self-organizing Map
with neuron vectors w; and
position coordinates vector r;

b The adaptation of the
self-organizing map after the
projection of a query vector q to
its closest neuron w; on the
neurons lattice £

Neuron w '

adapting not only the winner neuron w; of a pattern q but
also its topographical neighbors w; to some degree through
a Kernel distance function A (i, j; t) over the positions r;
and r; of neurons w; and w; in £, respectively. Usually,
h(i, j; t) is a Gaussian neighborhood function:

.2
h(i, j;t) = exp (—%) . 2)

Parameter p(¢) is the width of the neighborhood with ini-
tial value pg defined as p(t) = po exp(—TLp), where T, is a
constant. A small width value corresponds to narrow neigh-
borhood. We obtain SOM through an incremental update
rule that adapts all neurons that are topographically close to
W,

Aw; = B, ji 1) (q — W), Vi. 3

A good choice of B(t) improves significantly the conver-
gence of SOM [19]; usually B(t) = {252 with B(0) =
1. SOM yields a high quality vector quantization from all
UCL variants because of producing a structured ordering
of the pattern vectors, i.e., similar query patterns are pro-
jected to similar neurons, making it ideal for our purposes.
Figure 1 shows a SOM structure with neuron and posi-
tion vectors before and after an update. UCL/SOM does not
learn any conditional or joint association between different
pattern spaces. In our case, we desire also to estimate an
association between R? and N, i.e., estimate p(q, y) with
q € R* y e N, HCL comes into play.

3.1.3 Heteroassociative competitive learning

HCL estimates indirectly an unknown joint p(q, y), while
directly estimates a function f : R?*? — N over random
pairs (q, y). In statistical learning theory [21], HCL refers to
a function estimation model M (f, @) (or simply M) with
parameter @« € A (A is a parameter space defined later)
for estimating f. The problem of learning M is that of

(row 5 column j)

% QOriginal query q
O Winner neuron w;
O Neuron w,

@ Springer

2552

C. Anagnostopoulos et al.

choosing from a set of functions f(q, o), « € A, the one
which minimizes the risk function:

waifu»ﬂmmmm@w, @)

given random pairs (q, y) drawn according to p(q, y) =
p(qQ)p(y|q) with loss or estimation error L(y, y) between
actual y and predicted y = f(q,), e.g., L(y,y) =
|y — 9|. The goal for HCL is to learn M(f, ap) which
minimizes J(«) subject to unknown p(q, y), i.e., ¢p =
arg Mingea J (@)

3.1.4 Stochastic gradient descent

Stochastic gradient descent (SGD) is considered to be one
of the best methods for large scale loss minimization and
has been experimentally and theoretically analyzed by [10].
Upon the presence of a ¢-th pattern (q, y), (¢) is updated
by:

Aa(r) = =BO)VL(y, J; a(1)), &)

where VL is the gradient of L at ¢-th pattern w.r.t. o (z).
3.2 Problem formulation

Consider a model M that estimates the cardinality predic-
tion function

f:R¥ 5> N

given a finite set Q of training pairs (q, y) drawn from the
unknown p(q, y), i.e., y = f(q). The model M learns the
mapping from query pattern space to cardinality domain by
minimizing the risk function J(«) in (4) with respect to a
loss function (prediction error) L(y, ¥). A loss function can
be, e.g., A-insensitive L(y, y) = max{|y — y| — A, 0}, A >
0, 0-1 loss L(y,y) = I(y # y) with I be the indicator
function, squared loss (y — 9)%,or absolute |y — 3|.

The fundamental problem of the ML model for cardinal-
ity prediction is:

Problem 1 Given a dataset 53 and training pairs of queries
and their answer-set cardinality values (q, y) € Q, incre-
mentally train a model M which minimizes 7 («).

4 Set cardinality predictive learning

4.1 Machine learning methodology

A natural, baseline solution for cardinality prediction is dis-
tance nearest-neighbors regression. This prediction scheme

is based on utilizing the set cardinality values of similar
historical queries to predict the set cardinality value for a

@ Springer

new, unseen query. The notion of neighborhood is material-
ized by the distance (in some metric space, e.g., Euclidean
space) of the unseen query q to a (stored) query q; € Q,
whose cardinality value is y;. Hence, the regression function
for cardinality prediction y = f(q; k) refers to the aver-
age value of the cardinality values of the k-th closest stored
queries q;:

Vi@l
= k)= —— i Qi N; y 6
y = f(q; k) V@] E yi 1 q;i € Ni(q) (6)

i=1

where the neighborhood A (q) is the set of the k-th closest
queries to unseen query (:

Ne@ ={q; € 7.4 € T\Ne(@ : llgi —qll2 < ld"—qll2}.
(7)

In this k-nearest neighbors regression (k-nn), the cardi-
nality of the neighborhood k plays a significant impact on
the accuracy of prediction. The choice of k is very crit-
ical: (i) a small value of k& means that noise will have a
higher influence on the prediction result; (ii) a large value
of k, evidently, yields a computationally expensive predic-
tion result and defeats the basic philosophy behind, i.e.,
queries that are near might have similar densities in car-
dinality values; e.g., by involving in the final prediction
result irrelevant and non-similar queries. In general notion,
k is chosen to be +/|Q], where | Q] is the number of stored
queries in Q, thus, interdependent of the query dimension-
ality 2d. Moreover, a straightforward k-nn algorithm for
cardinality prediction is O(|Q|d log(k)), which obviously,
is not applicable for large-scale data-sets, especially when
k ~ /]Q]. This means that this (non-parametric) solution
does not scale with the number of queries and dimensional-
ity, thus, not suitable for scaling out for predictive analytics
tasks like our problem.

We propose a solution, which scales with the number of
queries and deals with the curse of dimensionality based
on parametric regression, i.e., we attempt to incrementally
extract knowledge from the Q set of historical queries and
then, abstract a parametric model suitable to scale and,
simultaneously, be computationally inexpensive for predic-
tions. In this context, our scalable methodology learns from
incoming queries and answers and dynamically builds a
parametric model, thus (i) avoiding to maintain and pro-
cess historical queries for making prediction and (ii) being
capable to swiftly predict cardinality independent on the
numbers of the queries.

Our objective is a scalable, parametric ML model M to:

1. incrementally quantize (cluster) the query pattern space,
thus, abstracting the query space by certain M parame-
terized prototypes, with a user-specific fixed M;

Scalable aggregation predictive analytics

2553

2. learn the localities of the association q — 'y, thus,
dealing with the curse of dimensionality [18] based on
localized regression models;

3. predict the set cardinality given an unseen query in
O (d log(M)) independent of the number of queries | Q).

The novelty of our model relies on the introduction of
two simultaneous incremental learning tasks:

— Task 1: incremental query space
(UCL/SOM; unsupervised learning);

— Task 2: incremental local learning of the q — y
association within the region of these neurons (HCL;
supervised learning).

quantization

Both tasks rely on certain 2-dimensional lattices, where
reside the parameters of the model. In Task 1, we abstract
the lattice parameters as the query representatives (neurons).
The parameters of the Task 2 refer to local output represen-
tatives (prototypes) depending on the representation of the
prediction function, residing on a different lattice. In this
work, we propose two variants for the cardinality prediction
function f.

4.2 The lattice concept in machine learning methodology
4.2.1 Neuron input lattice

In this input lattice, hereinafter referred to as the neuron lat-
tice £, we estimate the parameters, i.e., SOM neurons, that
represent the input space in our problem, i.e., the query pat-
terns. The 2d-dimensional neurons w; € L quantize the
query space into a fixed number of M query sub-spaces. As
will be elaborated later, this lattice is used for projecting an
unseen query q onto a query sub-space and then leading to
its associated output lattice for cardinality prediction.

Fig. 2 Cardinality lattice-based
prediction: Projection-
association-local prediction:
Simultaneous UCL and HCL
over lattices £ and C

4.2.2 Cardinality output lattice

In this output lattice, we estimate the (local) cardinality pro-
totypes y;, which are associated with each w;. The y; reside
on a cardinality lattice C such that the j-th index of w;
refers to the j-th index of y;. Hence, a point y; in the car-
dinality lattice corresponds to a local associative constant
function:

i(qQ =y;, R . j = i — wil2. 8
fil=yj,qe J argirer%llq will2 8

In the case of input lattice £ and output lattice C, the param-
eter set for model M is « = ({w;}, {y;},j =1,..., M.
Figure 2 shows the idea of the cardinality lattice.

4.2.3 Coefficient output lattice

In this outpur lattice, if the local associative function is
varying considerably around a point, a piece-wise constant
approximation may require many units. In this case, we refer
to the estimation of the local linear regression coefficients
m; = [mjo,mj1,...,mjgl € R**! which are associ-
ated with each query prototype w;. That is the cardinality
y is approximated by a linear combination of the query
dimensions q = [q1, ..., g2q], while m is the (2d + 1)-
dimensional vector of the linear coefficients, with m(being
the intercept in the R?? x N space. The m ; coefficients
reside on a coefficient lattice O such that the j-th index
of w; refers to the j-th regression plane governed by the
regression m; q . This defines a local regression plane over
the query and cardinality space, defined by those queries
that are projected on the query prototype w ;. Hence, a point
m; in the coefficient lattice corresponds to the parameter of
the local linear regression function:

fi@=m;q",qeR* : j =arg min g —wil>. (9
ie[M]

Cardinality lattice &

Neuron lattice £

Query space

@ Springer

2554

C. Anagnostopoulos et al.

Figure 3 shows the idea of the coefficient lattice. In the case
of input lattice £ and output lattice O, the parameter set for
model Misa = ({w;},{m;}),j=1,..., M.

4.3 Learning methodology
4.3.1 Overview

Consider the presence of a (random) training pair (q, y).
The following steps demonstrate the methodology of
exploiting such training pair for estimating the points on the:
neuron, cardinality and regression lattices.

Projection The query q from the training pair (q, y) is pro-
jected onto its (winner) closest neuron w; € L from the
neuron lattice. Certain neurons, including the winner w, are
then adapted to this occurrence. In this step, we have to define
the update rule Aw; for the neurons in the neuron lattice.

Association Simultaneously, the actual cardinality y from
the training pair (q, y) is utilized to update certain points
from the cardinality and regression lattices. Specifically, the
corresponding prototype y; € C, i.e., this is associated with
the winner query neuron w;, and the corresponding regres-
sion coefficient m; € O are updated based on y and the
query q (in the latter case) governed by feedback update
rules. Such rules derive from the stochastic negative partial
derivative (introduced later).

Prediction The model M after locating the winner neuron
w; based on the input lattice, predicts the cardinality using
Kernel regression over (i) the local associative functions in
the C lattice, and (ii) the local linear regression functions in
the O lattice.

Feedback The prediction result y feeds the C and O lattices
for updating the cardinality prototypes and the regression
coefficients, respectively.

Fig. 3 Coefficient lattice-based
prediction: Projection-
association-linear regression:
Simultaneous UCL and HCL
over lattices £ and O

Query space

projection

@ Springer

Neuron lattice £

-

4.4 The predictive learning algorithm

We adopt SOM for UCL since based on topology preserva-
tion we can claim that: if queries q and ' are similar due
to being projected onto the same neuron W; of L, then their
images through the local associative and local regression
functions f;(q) and f;(q') on cardinality lattice C and coef-
ficient lattice O, respectively, are likely to be similar, too.
This argument cannot be claimed by any other UCL method
(e.g., k-means or fuzzy c-means clustering), which does not
guarantee topological ordering of quantization vectors.

At this point, we can define the cardinality prediction
function y = f(q, a) based on the local associative and
regression functions, and in the sequel, report on the loss
function L(y, y). Consider two range queries q, q' normal-
ized firstly in [0, 11% (only for simplicity in our analysis).
Let the winner neuron w; € £ and its corresponding (i)
local associative function f;(q), i.e., cardinality prototype
y; € C and (ii) local linear regression function f;(q), i.e.,
regression coefficient m; € O to a random query q.

The cardinality prediction f is not only based on f;(q),
but also on the contribution of the neighboring f; (q) defined
by the topographical neighborhood of winner w;. This is
achieved by a kernel function K¢ (||r; — rj||2) over the nor-
malized location vectors r; and r; (.e., |r;|, |Ir;|| < 1)
of the associated neurons w; and w; in the input lattice
L, respectively. That is, y = f(q, @) is produced by the
(Nadaraya-Watson) Kernel regression model:

>l Kelri — ;1) fi(q)
Y Ke (e = x5l
with j = argminy,cc|lq — w;[|2. In this paper, we utilize
the kernel K, (x) = 0.75 - (1 — (%)2) d(x - <e),
which is the Epanechnikov kernel function shifted to 0.5
and scaled by 0 < € <« 0.5. Obviously, any other ker-

nel functions can be also adopted e.g., uniform, triangular,
quadratic, with Epanechnikov being most commonly used

y=rfqo = (10)

Local Linear f}(q) =m,q"

ardinality y

e
Coefficient lattice 0 Query ¢

Regression plane

association

—_—

regression

Scalable aggregation predictive analytics

2555

kernel for regression. Topographically close neurons w.r.t.
location vectors also imply close neurons w.r.t. Euclidean
distance. However, the adoption of a Kernel function over
the distance of neurons in R?¢ could assume query compo-
nents to be isotropically Gaussian, which is not a general
case when d is relatively large. The predicted cardinality y
is estimated by a kernel smoothing of those cardinality pro-
totypes and linear regression coefficients, whose associated
neurons are topographically close (w.r.t. €) to the winner
neuron.

Given actual y and predicted y in (10), we then adopt the
loss functions:

Li(y, 9 = |y — $land La(y,) = (v — 3)? (11)

since there are widely used for evaluating the prediction
error in cardinality prediction as in [11, 15, 27].

We can now provide the (on-line) learning phase of
the model M given a sequence of pattern (training) pairs
(q(1), y(1)), (q(2), y(2)), ... Query patterns q(¢) are used
for quantizing the query space (over £) and cardinalities
y(t) are used for learning the ¢ — y association (over C
and O). Upon the presence of a pattern pair (q(¢), y(¢)) the
winner w;(t) € L is determined by

Jj = arg min [lq(z) — w; (0)]. 12)
Wl'EE

After the projection of q to winner w;, the model M
updates in an incremental manner the winner and all its
neighbors of lattice £ such that they approach the query pat-
tern q with a magnitude of B(¢)A(i, j; t). In the same time,
the actual cardinality y is used for updating the correspond-
ing: (i) y; € C along with all prototypes y; € C and (ii)
m; € O along with all coefficients m; € O associated
with the neighbors of winner neuron w ;. Notably, the update
rules for each y; and m; are governed by the loss function
L(y,) we aim to minimize, having y defined in (10).

In the case of the neuron-cardinality lattices for cardi-
nality prediction, the model M estimates the parameter
o = ({w;}, {yi})iﬂi | by minimizing the objective function

Jiin (13)

1
Fi(twi), i) = 5 fW > ki, jliwi — al3dpov)

W,‘Eﬁ

+/ > kG, Ply —HldpQ) (13)

vieC

being taken over an infinite sequence of W = {q(1),
q(2), ...} and corresponding Y = {y(1), y(2),...} and
pWV), p(}) is the pdf of W and)/, respectively, with

M P— . .
)A} — Zi;{llce(”rt l‘j||)yz (14)
YimiKe(llri — ;1)

and j = argminy,c.|lq — w;||2. The factor % is for math-
ematical convenience. Here, we utilize the L in (11) loss
function, since the cardinality prototypes are local scalar
constant values within each query sub-space.

In the case of the neuron-regression lattices for cardi-
nality prediction, the model M estimates the parameter
a = ({w;}, {m;)X | by minimizing the objective function

Jrin (15)
1
Ta(twi). (mi)) = 3 /W > ki, liwi—ql3dpOy)

W,‘EE
1 A
+ / S ki, Ho—$2dp@) (15)
um,’EO

where p({{) is the pdf of m, with j = arg miny, c 2 |lq—Ww; |2
and

M Ke(lr; —rjlhm q
M Kellr: — vl

Here, we utilize the L, in (11) loss function, since we
estimate the local linear regression coefficients within each
query sub-space based on the ordinary least squares method.

(16)

<>

Theorem 1 Given a training pair (q(t), y(t)), the model
M converges to the optimal parameter o, which minimizes
the risk function J1 (o) in (13) with respect to loss function
Li(y,y) = |y—y|and y is defined in (14), if neuron w; (t) €
L and its associated prototype y;(t) € C are updated as:

Aw; () = A, j; 1) (q(t) — Wi (1)) (17)
M
. Ke(llr; — ;1)
Ayi(t)=B@) Y hk, j;1)
,; M Kellre — vl
xsgn (y(1) — $(1)) (18)

where sgn(-) is the signum function, B(t) is the learning rate
and h(i, j; t) is the neighborhood function, j is the index of
the winner neuron W j (t) of pattern query ((t) and predicted
y(t) is determined by (14).

The proof of Theorem 1 is provided in [5]; we present it
here for self-contained reasons.

Proof We derive the analysis of convergence corresponding
to lattices £ and C. We verify whether the quantization error
lw — q||§ and loss Li(y,y) = |y — y| actually decreases
as the learning phase proceeds, converging eventually to a
stable state.

The convergence is evaluated through the average
expected loss J; in (13) being taken over an infinite
sequence of W = {q(1), q(2), ...} and corresponding J =
{y(1), y(2),...} and p(W), p(}) is the pdf of W and),
respectively. Since both pdfs are unknown and sequences

@ Springer

2556

C. Anagnostopoulos et al.

Y and W are actually finite we use the Robbins-Monro
(RM) stochastic approximation for [/; minimization to find
an optimal value for each w;, y;,i = 1,..., M. Based
on RM the stochastic sample Ji(¢) of J; is Ji(t) =
1Y wiec b i DIWi) — a3+, 0 b, j: DIy () —
$(1)]. The J1(¢) has to decrease at each new pattern at ¢ by
descending in the direction of its (partial) negative gradient.
Hence, the SGD rule for each w; is Aw; (¢) = —%ﬁ(r)%
and for y; is Ay;(t) = _:30)%;((:))’ where B(r) satisfies
Y2y B(t) = ocoand Y o2 B(t) < oo [21]. From the par-
tial derivatives of J(#) we obtain the update rules (17) and
(18) for parameter set «. O

Remark 1 Note that the update rule (18) for prototypes
v; (t) involves the current prediction y(¢) of the model dur-
ing the 7-th training pair in the learning phase. Naturally
we update each y;(¢) in an on-line supervised regression
fashion, in which we take the prediction y(¢) in (14) as feed-
back. From (18) we observe that neighbor y; (¢) of y;(z) is
adapted by its relative contribution provided by the kernel
function, which is rational since y;(¢) contributes with the
same magnitude to the cardinality prediction. If y(¢) > $(¢),
then y; (¢) increases linearly with its contribution to predic-
tion approaching the actual y(z). On the other hand, i.e.,
y(t) < y(t), y;(t) decreases to move away from y(¢) and
approaches y(¢). When the current prediction error is zero,
ie.,, L(y(@®), y(®)) = |y(t) — $(¢)| = 0, there is no update
on the cardinality prototypes. Neuron w; () moves toward
pattern query q(¢) to follow the trend. Obviously, the more
similar a pattern query q and a neuron w; are, the less w;
gets updated.

Theorem 2 refers to the convergence of a neuron w;
to the local expectation query representative, i.e., centroid
E[q|Q;] in the input sub-space Q;.

Theorem 2 IfE[q|Q;] is the local expectation query of the
subspace Q; and prototype W; is the subspace representa-
tive, P(w; = E[q|Q;]) = 1 at equilibrium.

Proof The update rule for a neuron w; based on Theorem 1
is Aw; o (q—w;). Let the i-th neuron w; reach equilibrium:
Aw; = 0, which holds with probability 1. By taking the
expectation of both sides we obtain

0 = E[Aw;] =E[(q —w)] = /@ (q —wi)p(q)dq

= /@, qp(q)dq—w,-/_ r(qQ)dq.

1

This indicates that w; is constant with probability 1, and
then by solving E[Aw;] = 0, the w; equals the centroid

E[q|Q;]. O

@ Springer

If € is selected such that Kc(|lr; — rjl)) = 0,i # j,
then we obtain Ay; ~ sgn(y — y;) in which only y; of
the winner w; is updated, given that there is no significant
impact from other neighboring neurons after convergence,
e, Y M hik, j) "=° h(j, j) = 1. We then provide the
following theorem:

Theorem 3 If y; is the median of the partition Y ; corre-
sponding to the image of query sub-space Q; of winner w;
then P(y; = y;) = 1 at equilibrium.

The proof of Theorem 3 is provided in [5]; we present it
here for self-contained reasons.

Proof Let y; correspond to w; and assume the image of
Q; C R?? to subspace Y; C Nviathe y = f(q). The
median y; of Y; satisfies P(y > y;) = P(y < y;) = %
Suppose that y; has reached equilibrium, ie., Ay; = 0,
which holds with probability 1. By taking the expectations
of both sides and replacing Ay; with the update rule sgn(y —

yi):

E[Ay;] = / sgn(y — y;)p(y)dy

Pozy) [pods=Po<y) [ooy

=2P(y=y;)— L

Since Ay; = 0 thus y; is constant, then P(y > y;) = %,
which denotes that y; converges to the median of Y;. [J

Theorem 4 Given a training pair (q(t), y(t)), the model
M converges to the optimal parameter o, which minimizes
the risk function Jo (o) in (15) with respect to loss function
Ly(y,$) = (v — 9% and ¥ is defined in (16), if neuron
w;(t) € L and its associated linear regression coefficients
m; (¢t) € O are updated as:

Aw; (1) = B, j; 1) (q(t) — Wi (1)) (19)
u Ke(llri — ;1)
Am;(t) = B(t) Y h(k, j;1) !
,; S Ke(lee — 151
x (y(t) = 3®) [1; g7 (20)

where B(t) is the learning rate and h(i, j; t) is the neigh-
borhood function, j is the index of the winner neuron w ;(t)
of pattern query q(t) and predicted Y(t) is determined by
(16).

Proof As in the proof of the Theorem 1, the conver-
gence is evaluated through the average expected loss />
in (13) being taken over an infinite sequence of W =

{q(1),q(2), ...} and corresponding Y = {y(1), y(2),...}
and p(WW). We rest on RM stochastic approximation

Scalable aggregation predictive analytics

2557

for [J> minimization to find an optimal value for each
w;, m;,i = 1,..., M. The stochastic sample J>(t)
of Jois h(t) = LY o kG, js0lwi() — a3 +
% Zm,»e(? h(i, j: t)(y(t) — $(¢))%. Hence, the SGD rule for

each w; is Aw; (t) = —%ﬁ(t) g‘{fl(é)) and for m; is Am; () =
—%ﬁ(t)grﬁ((’)), where (1) satisfies 72, (1) = oo and

Z?io ,Bz(t) < 00 [21]. From the partial derivatives of
J2(t) we obtain the update rules (19) and (20) for parameter
set o. O

Remark 2 As seen in (20), when determining the positions
of regression coefficients, supervised (prediction) error is
not only taken into account, but also the input q and the
impact of all neurons (reflected by their neighborhood func-
tions h(k; j) are taken into consideration. Through this
coupled training of the regression coefficients and neurons
positions, query and regression representatives are placed in
the input and output space, respectively, in such a way so as
to minimize the loss function L.

Remark 3 Let us assume again that an € is selected such
that Kc(|lr; — rj]l) = 0,i # j. Given that both neurons
and regression coefficients converge from Theorem 4, then,
we obtain the update rule: Am; ~ (y — m]Tq)q, given that
there is no significant impact from other neighboring neu-
rons after convergence, i.e., Z,iwzl hk, j) Iz h(j,j) =
1; here, for mathematical convenience, we absorbed the
“intercept’ constant of the local regression plane by adding
a constant dimension of one to . Evidently, this corre-
sponds to the stochastic update rule for the multivariate
linear regression utilizing the ordinary least squares method.

The learning phase of model M is described in Algo-
rithm 1. The input is the training set of pairs Q = {(q, ¥)},
2-dim. lattices £ and C (or O) with M entries, and a stop-
ping threshold 6 > 0. The algorithm processes successive
random pattern pairs until a termination criterion 7; < 6. T;
is the 1-norm between successive estimates of neurons and
cardinality prototypes:

M
I, = Z(Hwi(f) —wi(t = DIl + [yi(®) — yi(t = D),
i=1

ey

or regression prototypes,

M
=Y (Iwi(t) — wi(t = Dl + [Imi (1) —m; (¢ = D),
i=1
(22)
with Wil = Y2 fwiel and [l [l = Y25 miel. The
output is parameter set «.

Algorithm 1 The cardinality learning algorithm

Input: training set 9, neuron lattice £, cardinality
lattice C, and regression lattice O with M
entries, stopping threshold 6

Output: parameter set o

Initialize (w; (0), y; (0)),i =1,..., M,

/+*neuron-cardinality lattice variantx/;

Initialize (w; (0), m; (0)),i =1,..., M,

/*neuron-regression lattice variant/x ;

t < 0;

repeat

t<—t+1;

Get the next training pair (q(¢), y(t)) € Q;

J =argming, e, llq(t) — w;i(t)[l2 /*projectx/;

Update neurons w; (¢), Vi /+*quantization

w.r.t. in (17) and (19)«/;

Predict y(¢) /*prediction feedback

w.r.t. in (14) and (16)*/;

Update cardinality prototypes y;(t), Vi

/+adaptation w.r.t. in (18) x/;

Update regression coefficients m; (¢), Vi

/+adaptation w.r.t. in (20) x/;

until 7, < 0;

4.5 Set cardinality prediction

Once the parameter set « is trained (for both output lat-
tice variants), and thus no more updates are realized on
neurons, cardinality prototypes and local regression coeffi-
cients, we predict the cardinality y given a random query q
as defined in (14) and (16). That is, we proceed with answer
set cardinality estimation without executing the incoming
query q.

Firstly, the query q is projected onto the neuron lattice £
and its winner w; is obtained. In the case of the cardinality
lattice C, the corresponding cardinality prototype y; is the
associated constant of the query sub-space Q;. In the case
of the regression lattice O, the local regression coefficient
m; is obtained. The predicted COUNT value is y calculated
by the Kernel regression over the region around the images
fi(q) = y; in lattice C and fi(q) = mqu in lattice O,
respectively, such that K¢ (|lr; —r;])) > 0,fori =1,..., M.

4.6 Computational complexity

During the learning phase of the model M, we require to
(i) find the closest (winner) neuron over the neuron lattice £
and then (ii) update all M prototypes in both input and out-
put lattices based on the neighborhood weight A(i, j), Vi.
This requires O(dM) space and O(dM) for the updates.
Since prototypes are updated during learning, the learning

@ Springer

2558

C. Anagnostopoulos et al.

phase requires O(d/6) [10] iterations to get 7; < 6. After
learning, we obtain cardinality prediction in O(d log M)
by applying an one-nearest neighbor search for the win-
ner using a 2d-dim. tree structure over the neurons in L.
After locating the winner, then we just retrieve those neigh-
boring neurons (constant number) which are determined by
the Kernel neighboring function K. In the case of updates,
adaptation given a pair requires also O (d log M) time for
searching for the winner. Hence, our proposed parametric
model, after training, can provide prediction in O (d log M),
which is independent of the size of the data |B| and the train-
ing set |Q|, thus, being capable for scaling out predictive
analytics tasks.

5 Implementation in Spark

We have implemented our model in the Spark system [32].
The reason behind this implementation is to explore how
such models can be incorporated into Big Data Engines.
In addition, we examine how much faster and how close
our cardinality estimations are, compared with the result
obtained from the built-in COUNT method provided by
these engines. This section covers the basic concepts behind
Spark [32] (currently a popular Big Data engine) and
an overview of how we developed and incorporated our
machine learning model into Spark.

5.1 Overview of Spark

The Resilient Distributed Datasets (RDDs) lie in the foun-
dation of Spark. RDDs are fault-tolerant distributed data
structures that allow users to save intermediate results in
main memory. This means that, RDDs can be easily recov-
ered once something goes wrong and that they can be easily
distributed in a cluster environment to improve efficiency.
Their recovery is relied on the lineage graph produced by
Spark. A lineage graph is a Directed-Acyclic Graph that is
used to record all of the changes made to a dataset. Hence,
once something goes wrong it can be easily re-computed
using the steps recorded. In addition, through this func-
tionality, the users can control the number of partitions to
optimize the data placement and, also, offer a rich set of
operations [32]. The set of operations can be divided into
transformations and actions which are described as follows:

5.1.1 Transformations in Spark
The RDDs are created by loading data files from permanent
storage or by using transformations on loaded data. These

transformations can change the loaded data through oper-
ations such as filter and map. A comprehensive list of the

@ Springer

available transformations can be found at Spark’s website.?
It is worth noting that transformations are not applied imme-
diately. Instead, Spark uses a lineage graph and pipelines
successive transformations to the original dataset once an
action is called [32].

5.1.2 Actions in Spark

Spark contains a type of methods called actions. These oper-
ations return a value to the application or export data into
storage [32]. Example of those types of actions are:

1. COUNT, which refers to the exact cardinality of a given
query and corresponds to our ground truth for assessing
the cardinality predictability of our model;

2. COLLECT, which returns a list of elements given a
query;

3. SAVE, which stores the RDD into a permanent storage,
e.g., HDFS or a local file system.

5.2 Machine learning model implementation

For UCL (Task 1), we implement the online SOM algorithm
with M neurons. We make use of the neurons input lat-
tice concept £ described in Section 4.2.1 and we implement
our UCL approach to partition the query space as described
in Section 3.1.1. The neuron input lattice £ contains all
of our neurons and the winner is determined and updated
as in (1) making use of Stochastic-Gradient descent. For
HCL (Task 2), we implement the supervised linear regres-
sion model making use of the coefficient output lattice O
described in Section 4.2.3, in which the coefficients m; =
[mjo,mj1,...,mjz] € R2Z+1 are associated with each
query prototype w; € L. We then generate our predictions
using Kernel regression in (16).

5.3 Range queries workload

In our implementation and experiments we dealt with multi-
dimensional queries corresponding to a 2-dimensional data
space (d = 2). The two boundary vectors are a = [aj, ar]’”
and b = [b1, b2]17, a; < b;, a;, b; € R. Hence, in the exper-
iments, a range query (is represented by a 4-dimensional
row vector q = [ay, b1, aa, by]. We further adjust this repre-
sentation to ease up the process of generating our query set
Q. In this context, our resulting queries are of the form q =
[c1, c2, [] with center ¢; = %bi, and volume | = b; — a;,
i =1,...,d. Through this representation, each query q is a
hyper-cube.

Zhttp://spark.apache.org/

http://spark.apache.org/

Scalable aggregation predictive analytics

2559

5.4 Cardinality prediction in Spark

To allow the execution of our model by Spark, we had
to extend the main abstraction class RDD. (Note that the
models we used or variations of them are available in
MLIib.>) However, using these models was not possible
when trying to extend the Spark-Core module because of
a cyclic-dependency error between MLIib and Spark-Core.
Therefore, we introduce some new methods to make use of
our model. The main methods are as follows:

1. Training: This method trains our model given a list
of executed range queries, i.e., the training set Q. This
Spark method is written in Scala:

def training (Q :
Integer , neurons:

String , regression
Integer)

where Q is the training set of queries, regression
refers to the number of training queries to be consid-
ered for training the local linear regression models, and
neurons refers to the number of neurons M in lattice
L that partition the query-space.

2. Estimation: This method returns a cardinality esti-
mation y given a range query q = [c1, ¢2, []. This Spark
method is written in Scala:

def estimation(cl: Double, c2:

Double, 1: Double)

We also developed a number of helper methods to ease
the execution of the two main methods.

1. Euclidean-Distance, which given two range
queries, it calculates the Euclidean distance;

2. closest, which given a query q, it finds its closest
neuron w; € L;

3. descent and movement, which update the winner
neuron w; w.r.t an incoming query q and learning rate 8.

Executing our cardinality predictor in Spark involves
two phases: the fraining and the prediction phase. The
training phase is based on an input file containing the set
Q = {(q;, yi)}}_, corresponding to previously executed
queries. The result of this phase generates an updated list of
predicting the cardinality of incoming queries through the
execution of the Estimation method. Executing these two
phases in Spark involves loading up the dataset Q contain-
ing our previously executed queries into an RDD. For the
training phase, we proceed using a map transformation to
this set and create a new representation for query set Q. The
new representation, includes the corresponding closest neu-
ron for each query q;, i.e., w; € £, j = arg minge[arllqi —
W |2, Vi. Therefore, each tuple in the query set is now of

3http://spark.apache.org/mllib/

the form Q = {(q;, yi, wj)}l’.‘zl. To train the local linear
regression models we iterate through all M neurons in lat-
tice L. For each neuron, we filter the query set Q such that
we obtain a subset Q; C Q : {(q;, yi, wj)}?:1 and j = k.
We then based on the subset Oy, train the associated linear
regression models fx(q) = m,—(rq. For the estimation phase,
we do not require any transformations since the only thing
we need are the coefficients m;, j € [M] for each one of the
local linear regression models f;(q) = ijq; these are sim-
ply stored as global variables on runtime or in an external
file.

Figure 4 shows the standard approach and our ML
approach over Spark through an example where the actual
cardinality y = 3678 as derived from the Spark’s COUNT.
Specifically, we observe the dataset B3 of data points x € R?
being stored along with our training set Q holding training
pairs of {(q;, y;)}7_,; and our stored coefficients m from the
coefficient lattice O. Moreover, Figure 4 demonstrates how
the COUNT is obtained using a standard approach with trans-
formations and actions. It is worth noting that the standard
approach requires expensive operations such as loading the
whole dataset B, filtering it in parallel and, then, executing a
COUNT action. However, in our ML approach, we can skip
this procedure and only incur the cost of loading our Coef-
ficient lattice O, or if our ML model was trained at runtime,
we could already have this model stored as a global vari-
able. We, then, proceed to predict the answer set cardinality
y using inexpensive operations.

6 Performance evaluation

We now turn to study the performance and accuracy of our
implemented machine learning model in Spark. We mea-
sure the model’s accuracy using various metrics and also
demonstrate how our model can be used to speed up joins
in databases. In addition, we compare its average execu-
tion time and standard deviation with Spark’s own COUNT
method over a standard file size. We also demonstrate the
scalability of our solution by varying the file sizes. Finally,
we measure the training time required by our machine learn-
ing model over different file sizes. Over the next sections,
we introduce the evaluation metrics used and also explain
how the training dataset was generated. Furthermore, we
describe the experiment procedure followed and analyze the
findings of our experiments.

6.1 Evaluation metrics
To evaluate our model we chose multiple evaluation metrics.
These metrics are divided into two categories, accuracy and

performance. Accuracy metrics help us determine whether
the estimations generated by our model are close to the

@ Springer

http://spark.apache.org/mllib/

2560

C. Anagnostopoulos et al.

Fig. 4 The standard approach
in obtaining the answer set
cardinality y (COUNT) and our
ML approach as a sequence of
transformations and actions
over the dataset /3., which
predicts the cardinality y

Standard Approach

filter with range
query

y actual

(cardinality)

| L

range-query

di

—_—

coefficient
lattice O

ML Approach

sc.textFile("://..ML_model_coefficients")

estimate count

estimateCount(range-query-predicate)

y estimate

coefficient
lattice O

actual (true) values. These true values are obtained from
the exact cardinality by invoking the COUNT Spark method.
Performance metrics help us compare our solution with
Spark’s own implementation of COUNT in terms of query
processing time. In addition, they can help us identify bot-
tlenecks in our solution when experimenting with different
file sizes or parameters, thus, evaluating the scalability of
our approach.

6.1.1 Cardinality prediction accuracy

The first accuracy metric for a prediction model is the
Root Mean Squared Deviation (RMSD) which aggregates
the magnitudes of the errors (y; — ¥;)*> corresponding to
the actual cardinality y; and the predicted cardinality y; of
unseen query q; for n prediction times:

RMSD — Z:'l:l();i _yi)2
n

By adopting RMSD, we can examine how large our predic-
tion errors are by using our model.

@ Springer

6.1.2 Coefficient of determination

The Coefficient of Determination R is calculated using the
sum of squared residuals Y (y; — $i)? and the total sum
of squares) ;' (yi — 7)2 where ¥ is the average cardinality
value y = %Zf’yi, ie.,

Xl 3)?

R =1 S
Y — 9)?

The R? is a real number within [0, 1] and indicates how
closely the obtained approximation of y ~ f(q, &) matches
the actual cardinality y. The closer R? is to 1, the better our
model fits the data and is able to make accurate cardinality
predictions.

6.1.3 Normalized RMSD (NRMSD)
A normalized version of RMSD is also used. Knowing the

normalized