276 research outputs found

    Multimodal Generative Learning Utilizing Jensen-Shannon-Divergence

    Full text link
    Learning from different data types is a long-standing goal in machine learning research, as multiple information sources co-occur when describing natural phenomena. However, existing generative models that approximate a multimodal ELBO rely on difficult or inefficient training schemes to learn a joint distribution and the dependencies between modalities. In this work, we propose a novel, efficient objective function that utilizes the Jensen-Shannon divergence for multiple distributions. It simultaneously approximates the unimodal and joint multimodal posteriors directly via a dynamic prior. In addition, we theoretically prove that the new multimodal JS-divergence (mmJSD) objective optimizes an ELBO. In extensive experiments, we demonstrate the advantage of the proposed mmJSD model compared to previous work in unsupervised, generative learning tasks.Comment: Accepted at NeurIPS 2020, camera-ready versio

    Part of Speech Based Term Weighting for Information Retrieval

    Full text link
    Automatic language processing tools typically assign to terms so-called weights corresponding to the contribution of terms to information content. Traditionally, term weights are computed from lexical statistics, e.g., term frequencies. We propose a new type of term weight that is computed from part of speech (POS) n-gram statistics. The proposed POS-based term weight represents how informative a term is in general, based on the POS contexts in which it generally occurs in language. We suggest five different computations of POS-based term weights by extending existing statistical approximations of term information measures. We apply these POS-based term weights to information retrieval, by integrating them into the model that matches documents to queries. Experiments with two TREC collections and 300 queries, using TF-IDF & BM25 as baselines, show that integrating our POS-based term weights to retrieval always leads to gains (up to +33.7% from the baseline). Additional experiments with a different retrieval model as baseline (Language Model with Dirichlet priors smoothing) and our best performing POS-based term weight, show retrieval gains always and consistently across the whole smoothing range of the baseline

    Prédire la difficulté des requêtes : la combinaison de mesures statistiques et sémantiques

    Get PDF
    National audienceLa performance d’un Système de Recherche d’Information (SRI) est étroitement liée à la requête. Les requêtes pour lesquelles les SRI échouent sont appelées dans la littérature des « requêtes difficiles ». L’étude présentée dans cet article vise à analyser, adapater et combiner plusieurs prédicteurs de difficulté de requêtes. Nous avons considéré trois prédicteurs: un lié à l’ambiguïté des termes, un basé sur la fréquence des termes et une mesure de répartition des résultats. L’évaluation de la prédiction est basée sur la corrélation entre la difficulté prédite et la performance réelle des SRI. Nous montrons que la combinaison de ces prédicteurs donne de bons résultats. Le cadre d’évaluation est celui des collections TREC7 et TREC8 adhoc

    Using the Jensen-Shannon, density power, and Itakura-Saito divergences to implement an evolutionary-based global localization filter for mobile robots

    Get PDF
    One of the most demanding skills for a mobile robot is to be intelligent enough to know its own location. The global localization problem consists of obtaining the robot's pose (position and orientation) in a known map if the initial location is unknown. This task is addressed applying evolutionary computation concepts (Differential Evolution). In the current approach, the distances obtained from the laser sensors are combined with the predicted scan (in the known map) from possible locations to implement a cost function that is optimized by an evolutionary filter. The laser beams (sensor information) are modeled using a combination of probability distributions to implement a non-symmetric fitness function. The main contribution of this paper is to apply the probabilistic approach to design three different cost functions based on known divergences (Jensen-Shannon, Itakura-Saito, and density power). The three metrics have been tested in different experiments and the localization module performance is exceptional in regions with occlusions caused by different obstacles. This fact validates that the non-symmetric probabilistic approach is a suitable technique to be applied to multiple metrics.This work was supported by the Competitive Improvement of Drilling and Blasting Cycle in Mining and Underground-Works through New Techniques of Engineering, Explosives, Prototypes, and Advanced Tools, which is a Research and Development project undertaken by the following companies: Obras Subterr a neas, MaxamCorp Holding, Putzmeister Iberica, Subterra Ingenieria, Expace On Boards Systems, Dacartec Servicios Informaticos, and Cepasa Ensayos Geotecnicos

    iQPP: A Benchmark for Image Query Performance Prediction

    Full text link
    To date, query performance prediction (QPP) in the context of content-based image retrieval remains a largely unexplored task, especially in the query-by-example scenario, where the query is an image. To boost the exploration of the QPP task in image retrieval, we propose the first benchmark for image query performance prediction (iQPP). First, we establish a set of four data sets (PASCAL VOC 2012, Caltech-101, ROxford5k and RParis6k) and estimate the ground-truth difficulty of each query as the average precision or the precision@k, using two state-of-the-art image retrieval models. Next, we propose and evaluate novel pre-retrieval and post-retrieval query performance predictors, comparing them with existing or adapted (from text to image) predictors. The empirical results show that most predictors do not generalize across evaluation scenarios. Our comprehensive experiments indicate that iQPP is a challenging benchmark, revealing an important research gap that needs to be addressed in future work. We release our code and data as open source at https://github.com/Eduard6421/iQPP, to foster future research.Comment: Accepted at SIGIR 202

    Resolving the Complexity of Some Fundamental Problems in Computational Social Choice

    Get PDF
    This thesis is in the area called computational social choice which is an intersection area of algorithms and social choice theory.Comment: Ph.D. Thesi
    corecore