8,135 research outputs found

    Query Evaluation on Compressed Trees (Extended Abstract)

    Get PDF

    Efficient XML Keyword Search based on DAG-Compression

    Full text link
    In contrast to XML query languages as e.g. XPath which require knowledge on the query language as well as on the document structure, keyword search is open to anybody. As the size of XML sources grows rapidly, the need for efficient search indices on XML data that support keyword search increases. In this paper, we present an approach of XML keyword search which is based on the DAG of the XML data, where repeated substructures are considered only once, and therefore, have to be searched only once. As our performance evaluation shows, this DAG-based extension of the set intersection search algorithm[1], [2], can lead to search times that are on large documents more than twice as fast as the search times of the XML-based approach. Additionally, we utilize a smaller index, i.e., we consume less main memory to compute the results

    GraCT: A Grammar based Compressed representation of Trajectories

    Get PDF
    We present a compressed data structure to store free trajectories of moving objects (ships over the sea, for example) allowing spatio-temporal queries. Our method, GraCT, uses a k2k^2-tree to store the absolute positions of all objects at regular time intervals (snapshots), whereas the positions between snapshots are represented as logs of relative movements compressed with Re-Pair. Our experimental evaluation shows important savings in space and time with respect to a fair baseline.Comment: This research has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sk{\l}odowska-Curie Actions H2020-MSCA-RISE-2015 BIRDS GA No. 69094
    • …
    corecore