
Query Evaluation on Compressed Trees∗

(Extended Abstract)

Markus Frick Martin Grohe Christoph Koch

Abstract

This paper studies the problem of evaluating unary (or node-
selecting) queries on unranked trees compressed in a natural
structure-preserving way, by the sharing of common subtrees. The
motivation to study unary queries on unranked trees comes from
the database field, where querying XML documents, which can be
considered as unranked labelled trees, is an important task.

We give algorithms and complexity results for the evaluation
of XPath and monadic datalog queries. Furthermore, we propose
a new automata-theoretic formalism for querying trees and give
algorithms for evaluating queries defined by such automata.

1. Introduction

Semi-structured data, best-known in the syntax of XML,
have caused a significant paradigm shift in the field of
database systems, and have also been one of the central
research topics in database theory over the last five years
(see [1] and [24] for surveys). While classical relational
databases can be described as relational structures, XML-
documents are best modelled by unranked trees. This paper
studies the problem of evaluating unary (or node-selecting)
queries on unranked trees compressed in a natural structure-
preserving way, by the sharing of common subtrees. Node-
selecting queries are not only of interest as basic queries
in their own right, but are also an important building block
for more complex queries. In particular, the node-selecting
path query language XPath is at the core of several ma-
jor XML-related technologies, such as XML Query, XML
Schema, and XSLT, the principal query language, schema
definition formalism, and stylesheet language for XML, re-
spectively. Thus, the efficient processing of XPath queries
(and the study of node-selecting XML queries in general) is
paramount to the overall success of all these technologies.

The compression of XML-trees into directed acyclic
graphs by the sharing of subtrees has recently been pro-
posed by Buneman, Grohe and Koch [6]. It can be seen as
a direct generalisation of the compression of Boolean func-

∗Author’s addresses: Laboratory for Foundations of Computer Sci-
ence, University of Edinburgh, Edinburgh EH9 3JZ, Scotland, UK. Email:
{mfrick,grohe}@inf.ed.ac.uk, koch@dbai.tuwien.ac.at

tions into OBDDs (cf. [5]) used so successfully in symbolic
model checking [7, 8]. The approach bears the promise
of advancing the state of the art in XML query process-
ing at two fronts. First, compression allows to keep larger
document trees in main memory (where they can be effi-
ciently evaluated) and permits a substantial speedup by of-
ten avoiding the need to use slow secondary storage when
trees are large and otherwise cannot be kept in main mem-
ory as a whole. Second, evaluating queries on compressed
trees in practice saves time by avoiding redundant compu-
tations. In [6], it was implemented for a large fragment of
XPath (Core XPath, which was introduced in [16]) and ex-
tensively benchmarked on practical XML documents sev-
eral hundreds of Megabytes large and consisting of trees
comprising tens of millions of nodes. The compression ra-
tios obtained were very promising, and the actual efficiency
of query processing obtained was astonishing.

The main objective of this paper is to create a solid theo-
retical foundation for the approach. The problem of evalu-
ating Core XPath queries on compressed instances has been
shown to be fixed-parameter tractable in [6]. More specif-
ically, the problem has been shown to be solvable in time
O(k ·2k ·n), where k denotes the size of the query and n the
size of the compressed instance. Complementing this result,
here we prove that the problem is PSPACE-complete. Fur-
thermore, we show that the problem of evaluating queries of
the positive Core XPATH fragment (i.e., without negation)
is NP-complete. Let us remark that the problem of evaluat-
ing Core XPath queries on uncompressed trees is known to
be in polynomial time (actually, PTIME-complete [17]).

Even though undoubtedly very important in practice,
from a theoretical perspective XPath seems to be a very
ad-hoc language that leaves a lot to be desired. Monadic
second-order logic (MSO) on trees, on the other hand, is
well-known to have beautiful theoretical properties. In par-
ticular, it has well-balanced expressive power in that it is
expressive enough for most purposes, but on the other hand
still has good algorithmic properties due to its connection
with tree automata. Indeed, MSO has been proposed as
a “benchmark” for the expressive power of node-selecting
XML query languages [25]. Nevertheless, MSO itself is not
suitable as a practical query language because it allows to

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147972951?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

express very complex queries very concisely, which makes
the query evaluation problem intractable even on uncom-
pressed trees (cf. [27, 13]). But there are nice languages
which have the same expressive power as MSO on trees,
but admit much more efficient query evaluation. The modal
µ-calculus may be seen as an example of such a language
(at least on ranked trees). In the context of querying XML,
the most promising such language is monadic datalog. It
has the same expressive power as MSO, but admits query
evaluation in time linear in both the size of the datalog pro-
gram and the size of the tree [14].

We study the evaluation problem for monadic datalog
queries on compressed instances. We show that, as for
the strictly weaker Core XPath, the problem is PSPACE-
complete. Of course the PSPACE-hardness was to be ex-
pected, but the containment of the problem in PSPACE may
be viewed as mildly surprising. We then show that, again
as for XPath, there is an algorithm solving the evaluation
problem for monadic datalog on compressed instances in
time O(k · 2k · n), where k denotes the size of the datalog
program and n the size of the compressed instance.

Next, slightly digressing from the main focus of this pa-
per, we discuss the connection between compressed binary
and unranked trees. Even though XML-documents are nat-
urally represented as unranked trees, we believe that it may
be worthwhile to convert them into binary trees first and
then only work with compressed binary trees. We show
how such a conversion can be carried out without paying too
high a price for it and observe that in certain situations the
compressed binary instances may be exponentially smaller
than the compressed unranked instances they represent. An
additional advantage this may have in practice is that nodes
of binary instances can be stored in a fixed size memory
segment, whereas nodes of unranked instances may have
adjacency lists of unbounded length, which tend to lead to
high memory fragmentation. Experimental evidence (pre-
sented in the long version of the paper) suggests that the
conversion to binary instances is worthwile in practice and
may lead to more memory- and time-efficient XML query
engines.

Returning to the query evaluation problem, an alternative
approach to querying trees can be based on tree-automata.

Right from the beginning, automata-theoretic ideas have
played a central role in XML-related research. Automata
theory has been used for evaluating path and pattern queries
[4, 25, 26, 14], as a basis for XML schema languages
[20], for defining XML transducers [21], and for XML data
stream processing [18]; See [24] for a survey of automata-
theoretic work related to XML.

Most important in our context are query automata, pro-
posed by Neven and Schwentick [26] to describe node-
selecting queries on unranked trees. We suggest a simi-
lar automata model that we call selecting tree automaton

(STA). STAs have the same querying power and similar al-
gorithmic properties as query automata, but we feel they
are much cleaner and simpler. Even though our main in-
terest here is in querying compressed instances, STAs are
relevant in the uncompressed setting as well. We show that
STA-queries on compressed instances can be evaluated in
time 2O(s) · n, where s is the size of the automaton and
n the size of the compressed instance. Unfortunately, this
seems to be too inefficient for practical purposes, because
we usually cannot expect our automata to be so small that
a factor in the running time that is exponential in s is ac-
ceptable. For example, translating a monadic datalog pro-
gram into an equivalent STA causes an exponential blow-up
in size. Therefore, we also consider a restricted model of
weak selecting tree automata, whose definition captures the
intuitions of monotonic inference in monadic datalog. This
is witnessed by the fact that the above transformation from
monadic datalog (which comes with the mentioned expo-
nential blow-up) naturally yields weak STAs, and the time
to evaluate such automata on compressed instances is lin-
ear. Therefore, in total, weak STAs evaluate monadic data-
log programs within essentially the same time bound as the
direct evaluation techniques discussed above.

The structure of this paper basically follows the order
of contributions given above. Due to space limitations, the
proofs of our results were beyond the scope of this extended
abstract and will be supplied in the long version of the paper.

2. Compressed Trees

In this section, we review the framework for querying trees
compressed by subtree sharing that has been introduced in
[6]. We emphasise the central role of the familiar notion of
bisimilarity in this framework.

2.1. Instances and Bisimilarity. A schema is a finite set of
unary relation names. Let σ = {S1, . . . , Sn} be a schema.
An instance of schema σ, or σ-instance, is a tuple

I =
(

V I, γI, rootI, SI
1, . . . , S

I
n

)

,

where V I is the (finite) set of vertices, γI : V I → (V I)∗ is
a function whose graph is acyclic and has a unique vertex
of in-degree 0 from which all other vertices are reachable,
rootI is this vertex of in-degree 0, and SI

1, . . . , S
I
n are sub-

sets of V I.
Here the graph of γ is the directed graph with vertex set

V I and an edge from v to w if w occurs in γ(v). We call
this graph the DAG of I. Occasionally we denote its edge

relation by EI. For vertices u, v ∈ V we write u
i
→ v if

there is an n ≥ i and vertices v1, . . . , vn such that γ(u) =

v1 . . . vn and v = vi. Intuitively, if u
i
→ v then v is the i-th

child of u and u is the parent of v. An instance is k-ary,

2

BA BA

Figure 1. Two bisimilar instances over schema
σ = {A,B}.

for some k ≥ 1, if every vertex has at most k children. If
the instance I is clear from the context, we often omit the
superscript I.

A tree instance is an instance whose DAG is a tree. Tree-
instances are our model of XML-documents. The unary re-
lations represented by the schema are used to encode the
relevant information carried by the vertices of an XML-tree.
This may be the XML-tag of a vertex, but also information
encoded in the alphanumerical data at the vertex. Indeed,
the latter is of crucial importance because node-selecting
queries will usually access the alphanumerical data. The
implementation of Core XPath in [6] admits querying al-
phanumerical data through so-called string constraints.

A bisimilarity relation between two σ-instances I and
J is a binary relation ∼⊆ V I × V J such that for all v ∈
V I, w ∈ V J with v ∼ w we have

– for all i and v′ ∈ V I, if v
i
→ v′ then there exists w′ ∈

V J such that w
i
→ w′ and v′ ∼ w′,

– for all i and w′ ∈ V J, if w
i
→ w′ then there exists

v′ ∈ V I such that v
i
→ v′ and v′ ∼ w′, and

– for all S ∈ σ:
(

v ∈ SI ⇐⇒ w ∈ SJ
)

.

Thus, our notion of bisimilarity relation takes both node and
edge labels that are present in the tree into account.

If there is some bisimilarity relation ∼ between I and J
such that v ∼ w, we call the vertices v and w bisimilar (we
write v ≈ w or (I, v) ≈ (J, w)). The instances I and J are
bisimilar (we write I ≈ J) if rootI ≈ rootJ. An example of
two bisimilar instances is given in Figure 1.

If I is an instance and ∼ a bisimilarity relation on I (that
is, between I and I), then I/∼ is the instance obtained from
I by identifying all vertices v, w with v ∼ w. Pairs of edges

v
i
→ w, v′

j
→ w′ (with v ∼ v′, w ∼ w′) may only be

identified in this process if i = j. We define a partial order
� on the class of all σ-instances by letting I � J if there
is a bisimilarity relation∼ on J such that I is isomorphic to
J/∼. More precisely, � is a partial order on the set of all
isomorphism classes of instances. But no harm is done by
blurring this distinction here and in the following.

Lemma 1 ([6]). Let I be a σ-instance and let L(I) be the
class of all instances bisimilar to I. Then

(

L(I),�
)

is a
lattice. Its maximal element T(I) is the only tree instance
in L(I). The minimal element M(I) is also characterised by
the fact that it contains the least number of vertices of all
instances in L(I).

It will be necessary later to have a canonical definition
of T(I), and not just a characterisation up to isomorphism.
If v, v′ are vertices in an instance I, and there are intermedi-

ate vertices v1, . . . , vn−1 such that v
i1→ v1 . . . vn−1

in→ v′,
we say that the integer sequence i1 . . . in is an edge-path
between v and v′. For each vertex v ∈ V we define

Π(v) = {P | P is an edge-path from root to v},

and for a set S ⊆ V we let Π(S) =
⋃

v∈S Π(v). Note
that the vertices of T(I) are in one-to-one correspondence
with the elements of Π(V). Thus we can define our canon-
ical representation of T(I) to have vertex set Π(V) (and all
relations defined in the obvious way). Also note that for
bisimilar instances I ≈ J and vertices v ∈ V I, w ∈ V J we
have v ≈ w if and only if Π(v) = Π(w).

2.2. Representations and Size. Our machine model is a
standard RAM model with addition and subtraction as arith-
metic operations. We use a uniform cost measure. While for
some of the theoretical considerations of this paper a loga-
rithmic cost measure would be nicer (cf. Remark 14), we
think that for the practical analysis of our algorithms a uni-
form measure is most appropriate. After all, a main motiva-
tion for this research is to give main memory algorithms for
querying XML-documents, and this basically means that in
our algorithms we never have to handle numbers that do not
fit into a single memory word.

We represent instances in a straightforward way based
on an adjacency list representation of the underlying DAG.
There is one important twist: Instances may contain mul-
tiple edges, and instead of storing them all separately, we
just use one adjacency list entry which contains an integer
representing the multiplicity to represent consecutive edges
from a vertex to a child. Since the order of the children of
a vertex is important, we can only do this for consecutive
edges to the same child (see Figure 2). In practice, this con-
cise representation of multiple edges is extremely impor-
tant, because XML-trees tend to be very broad and shallow,
and therefore their compressed versions tend to have many
multiple edges. We denote the size of the representation of
an instance I by ||I||. Note that we have |V I| ≤ O(||I||) and
||I|| ≤ O(|V I|2). Moreover, we have ||I|| ≤ O(|EI|), but
our concise representation of multiple edges and the uni-
form cost model imply that we cannot bound |E I| in terms
of ||I||. If we let mult(I) be the maximum number of con-
secutive multiple edges, that is, the maximum number of

3

edges represented by a single adjacency list entry, we have
|EI| ≤ O(||I|| ·mult(I)).

4 1
2

1

Figure 2.

The following earlier result refers to the computation of
compressed instances even with edge multiplicities:

Theorem 2 ([6]). There is an algorithm that, given an in-
stance I, computes the minimal bisimilar instance M(I) in
time O(||I||).

3. Queries and Query Languages

3.1. Queries. Since we think of an instance I as being
a compressed representation of the tree instance T(I), we
define the semantics of queries with respect to the tree in-
stances. Our notion of query is based on the use of this
term in finite model theory: A (unary) query Q of schema
σ associates with every tree instance T of schema σ a sub-
set Q(T) ⊆ V T in such a way that for every isomorphism
π from a tree-instance T to a tree instance T′ we have
π(Q(T)) = Q(T′). Note that the term “query” usually has
a different meaning in the theory of semi-structured data;
there a query is a mapping from tree instances to tree in-
stances (see [1]). What we call unary query here is usually
called pattern in this framework.

We want to evaluate queries on compressed instances,
preferably without fully decompressing them. The problem
is that we cannot always represent the result of a query in
the instance we are given: While every subset X ⊆ V I

canonically corresponds to the subset Π(X) ⊆ V T(I) =
Π(V I), unless I = T(I) it is not the case that for every set
Y ⊆ V T(I) there is a set X ⊆ V I such that Y = Π(X). So
to represent the answer of a query we may have to partially
decompress the instance. The following definition makes
this precise:

Definition 3. The evaluation problem for a query language
L on a class C of instances is the following problem:

Input: Instance I ∈ C and query Q ∈ L.
Problem: Return an instance J and a subset Q̃ ⊆

V J such that I and J are bisimilar and
Q(T(I)) = Π(Q̃).

If C is not explicitly mentioned, it is understood to be
the class of all instances.

Our complexity-theoretic results only refer to the deci-
sion version of the evaluation problem:

Input: Instance I ∈ C, vertex v ∈ V T(I), and
query Q ∈ L.

Problem: Decide if v ∈ Q(T(I)).

In this definition, we supply a node of the uncompressed
tree-version of the instance I with the input, since nodes
of I do not necessarily exist in Q(I). Clearly, a good
way to formulate global properties of instances as deci-
sion problems is to check queries on the root node, since
Π(rootI) = {rootT (I)} for all instances.

3.2. Complexity. We assume that the reader is familiar
with the standard complexity classes such as PTIME, NP,
and PSPACE. It is convenient to phrase some of our results
in the terminology of fixed-parameter tractability (see [10],
or [19] for a short introduction into the notions most rele-
vant here). Actually, we only need one definition: The eval-
uation problem for L on C is fixed parameter tractable if
there is a computable function f , a constant c, and an algo-
rithm solving the problem in time f(k) · nc, where n is the
size of the input instance and k the size of the input query.

3.3. Logic and relational structures. We assume that
the reader is familiar with relational structures, first-order
logic FO, and monadic second-order logic MSO (see, for
example, [11]). In the logical context, we describeσ-tree in-
stances as relational structures whose vocabulary consists of
all unary relation symbols in the schema σ and, in addition,
the unary relation symbols Root, Leaf, Last-Sibling, and
the binary relation symbols First-Child and Next-Sibling,
all with the natural meanings (cf. [14]). We occasionally
call Root, Leaf, Last-Sibling, First-Child, and Next-Sibling
the built-in predicates. We use T to denote both the tree
instance and the relational structure representing it.

If T is a tree instance and ϕ(x) an MSO-formula with
one free variable, then we let ϕ(T) be the set of all vertices
v ∈ V T such that T satisfies ϕ(x) if x is interpreted by v.
We call T 7→ ϕ(T) the query defined by ϕ.

3.4. Monadic datalog. We assume that the reader is fa-
miliar with datalog, which may be viewed as logic program-
ming without function symbols (cf. [2]). A datalog program
is monadic if all its IDB predicates (that is, intensional pred-
icates that appear in rule heads somewhere in the program)
are unary. We interpret monadic datalog programs over tree
instances. A monadic datalog program of schema σ may
use as EDB predicates (that is, extensional predicates which
are determined by the structure the program is interpreted
over) the built-in predicates Root, Leaf, Last-Sibling, the
binary relation symbols First-Child and Next-Sibling, the
predicates in σ, and a predicate S for every S ∈ σ which

4

is interpreted as the complement of S. Each programP has
a distinguished goal (IDB) predicate. The query defined by
P maps a tree instance T to the set of all vertices v such
that P derives over T that v is in the goal predicate. Two
programs are equivalent if they define the same query.

The popular fixpoint semantics of (monadic) datalog can
be defined by means of a small-step1 monotonic immedi-
ate consequence operator TP . Given a set of ground (i.e.,
variable-free) atoms X , TP chooses a rule of P (with head
predicate P) and a node v such that X satisfies the rule
body and a new ground atom P (v) can be inferred (then,
TP(X) = X ∪ {P (v)}). We write the k-times iterated
application of TP as TP

k and the fixpoint TP
m = TP

m+1

as TP
ω. In this context, we may consider an instance T as a

set of unary and binary ground atoms and evaluate P on T
as TP

ω(T).
We only use monadic datalog programs with a restricted

syntax described next. In a TMNF program (“Tree-marking
Normal Form”), each rule is an instance of one of the four
rule templates (with “types” 1 to 4)

P (x) ← U(x). (1)

P (x) ← P0(x0) ∧ B(x0, x). (2)

P (x0) ← P0(x) ∧B(x0, x). (3)

P (x) ← P1(x) ∧ P2(x). (4)

where P, P0, P1, P2 are IDB predicates and U,B are EDB
predicates.

Proposition 4 ([14]). Every monadic datalog program
(over trees) can be translated into an equivalent TMNF pro-
gram in linear time.

Thus, in the following, we only deal with programs in
TMNF. All worst-case bounds for TMNF query evaluation
translate immediately to the evaluation of monadic datalog.
Note that monadic datalog captures MSO over trees [14]
and a program P can be evaluated in time O(||T|| ∗ |P|)
when T is a tree-instance [14]. The following new result is
based on a lazy rule-instantiation version of an algorithm by
Minoux [22]:

Proposition 5. A TMNF program P can be evaluated on
tree-instance T in time O(|T|+ |P| ∗ |TP

ω(T)− T|).

Proof of Proposition 5: It is easy to verify by inspection that
the algorithm of Figure 3 indeed computes TP

ω(T)−T and
stores it in Ω.

The main idea responsible for the low runtime bound is
to use a queue containing newly derived atoms into which

1Note that this nondeterministic definition is slightly nonstandard ut
makes certain induction proofs more straightforward. Usually, the imme-
diate consequence operator adds to X in one step all the atoms that can be
inferred as described here from the atoms in X. Of course, the fixpoint of
the both versions of the operator is the same on all instances and programs.

Input: program P , tree-instance T.
Output: set of ground atoms Ω = TP

ω(T)− T.

Initializations:
// waiting queue for true ground atoms.
W := {P (v) | P (x)← U(x). is in P ,

U(v) is true w.r.t. T};

Ω := W ; // results: set of ground atoms.

// rules by predicate.
map R: predicate→ set of rule-ids;
for each IDB predicate P do

R[P] := {r | the body of r contains P};

// half-finished ground rules of type 4.
map Aux4: rule-id→ set of ground atoms;
for each rule r ∈ P of type 4 do Aux4[r] := ∅;

Main loop:
while (W not empty) do
begin

take a ground atom P (v) off W ;

// rules of type 2 and 3
for each rule P ′(x)← P (x0) ∧ B(x0, x).

in R[P], B(v, w) true w.r.t. T or
P ′(x)← P (x0) ∧ B(x, x0).

in R[P], B(w, v) true w.r.t. T do
// where B is either First-Child or Next-Sibling
begin

if (P ′(w) not yet in Ω) then
add P ′(w) to W and to Ω;

end;

// rules of type 4
for each rule r = P ′′(x)← P (x) ∧ P ′(x).

in R[P] do
begin

if (P (v) not in Aux4[r]) then
add P ′(v) to Aux4[r];
// what is actually waiting now
// is the ground rule P ′′(v)← P ′(v).

else
// P ′(v) has been satisfied before and
// P (v) is satisfied now as well - rule fires.
if (P ′′(v) not yet in Ω) then

add P ′′(v) to W and to Ω;
end;

end;

Figure 3. Modified Minoux algorithm for TMNF.

5

no atom is ever inserted twice and which governs the in-
ference of further atoms. Moreover, rules r with several
IDB body atoms (i.e., those of type 4) are instantiated (that
is, their variable is matched and replaced with a node) im-
mediately when a first appropriate atom a is reached in the
queueW . The body atom matching a is also removed from
the instantiated version of r, leading to a rule with one body
atom less. (Note that we assume that rule bodies are sets
and thus that there are no duplicate atoms in rule bodies.)

The initialization phase (before the start of the while
loop) is dominated by the initial value assignment to W in
time O(|TP

ω(T)− T|) and to R in time O(|P|).

The while-loop that follows iterates exactly |TP
ω(T)−T|

times (once for each IDB ground atom inferred). We as-
sume appropriate data structures (e.g. an array of size |P| ∗
|V T| for Ω) that allow to do all data structure look-ups in
constant time. The first for-loop runs in constant time, as it
may have at most four iterations. The second for-loop (han-
dling rules of type 4) may take timeO(|P|), thus the overall
while loop can be processed in time O(|P|∗ |TP

ω(T)−T|).
The time bound of Proposition 5 follows.

�

Note that by definition, TP
ω(T) contains T as a set of

ground atoms.

3.5. Core XPath. XPath uses thirteen binary relations –
called axes – for navigating in trees [30]. We only need to
introduce five of them in this paper, Self (the identity rela-
tion on V), Child (the intuitive child relation; Child(v, w)
iff w is a child of v), Parent (its inverse), Descendant
(the transitive closure of Child), and Ancestor (its inverse).
Given a binary axis relation χ, an axis is its inverse, denoted
χ−1, if 〈x, y〉 ∈ χ ⇔ 〈y, x〉 ∈ χ−1. For each XPath axis,
there is also an XPath axis that is its inverse. For example,
Self−1 = Self, Child−1 = Parent, and Descendant−1 =
Ancestor. In the following definition of a fragment of
XPath, we assume all 13 axes to be supported, even if only
a few have been introduced here (for a complete formal def-
inition of Core XPath see [16]).

Definition 6. Let T be a tree-instance. We define the syntax
of Core XPath by the EBNF

corexpath: locationpath | ‘/’ locationpath
locationpath: locationstep (’/’ locationstep)*
locationstep: χ ‘::’ P | χ ‘::’ P ‘[’ pred ‘]’
pred: pred ‘and’ pred | pred ‘or’ pred

| ‘not(’ pred ‘)’ | corexpath | ‘(’ pred ‘)’

“corexpath” is the start production,χ stands for an axis, and
P for a “node test”, that is, a unary relation from σ or “*”,
meaning “any node” V T.

The semantics of Core XPath queries on tree-instances
T is defined by two functions S and E (for Core XPath ex-

pressions and condition predicates, respectively):

S : L(corexpath)→ 2V
T×V T

S[[χ::P [e]]] := {〈x, y〉 | χT(x, y) ∧ y ∈ (P ∩ E [[e]])}

S[[/π]] := V T × {x | 〈rootT, x〉 ∈ S[[π]]}

S[[π1/π2]] := {〈x, z〉 | ∃y : 〈x, y〉 ∈ S[[π1]] ∧

〈y, z〉 ∈ S[[π2]]}

E : L(pred)→ 2V
T

E [[e1 and e2]] := E [[e1]] ∩ E [[e2]]

E [[e1 or e2]] := E [[e1]] ∪ E [[e2]]

E [[not(e)]] := V T − E [[e]]

E [[π]] := {x0 | ∃x : 〈x0, x〉 ∈ S[[π]]}

Here, π, π1 and π2 are location paths. Query Q results
in the set {y | ∃x : 〈x, y〉 ∈ S[[Q]]}.

An example of a Core XPath query is

/descendant::*[child::A and child::B]/child::*,

which selects all children of descendants of the root node
that (i.e., the descendants) have a child node labelled A and
a child node labeled B.

Core XPath is a strict fragment of XPath [30], both syn-
tactically and semantically.

A mapping from Core XPath to monadic datalog with
stratified negation was given in [15]; we strengthen this re-
sult to (negation-free) TMNF. Note again that we assume
that Core XPath supports all XPath axes.

Proposition 7. Every Core XPath query can be translated
into an equivalent TMNF program in linear time and loga-
rithmic space.

Proof of Proposition 7 (Sketch): To keep the encoding of
this proof simple, we do not strictly adhere to TMNF syn-
tax. However, all datalog rules can be transformed into
TMNF by folding pairs of unary atoms from long rules into
separate rules. For instance, a rule

P (y)← P1(x) ∧ P2(x) ∧ P3(x).

rewrites into

P (y) ← P ′(x) ∧ P3(x).

P ′(x) ← P1(x) ∧ P2(x).

where P ′ is a new predicate. This is not an additional trans-
formation that has to be composed with the proof, but can
be applied a priori to our encoding.

The encoding presented here is closely based on one pre-
sented in [15]; however, there, negation was encoded us-
ing datalog with stratified negation, which we do not want

6

ChildP (x) ← P (x0) ∧ First-Child(x0, x).

ChildP (x) ← ChildP (x0) ∧ Next-Sibling(x0, x).

ChildP (x) ← Root(x).

ChildP (x) ← P (x0) ∧ First-Child(x0, x).

ChildP (x) ← ChildP (x0) ∧ Next-Sibling(x0, x).

ParentP (x) ← Aux-ParentP (x0) ∧

First-Child(x, x0).

Aux-ParentP (x) ← P (x).

Aux-ParentP (x) ← Aux-ParentP (x0) ∧

Next-Sibling(x, x0).

ParentP (x) ← Leaf(x).

ParentP (x0) ← First-Child(x0, x) ∧

Aux-ParentP (x).

Aux-ParentP (x) ← P (x) ∧ Last-Sibling(x).

Aux-ParentP (x) ← P (x) ∧ Next-Sibling(x, y) ∧

Aux-ParentP (y).

Figure 4. Axis encodings (for Child, Parent, and their
complements).

to use here.2 The idea is to push down negation to unary
built-in predicates, for which we, by the definitions of Sec-
tion 3.4, have the complements available. The slightly
tricky part is the (binary) axis relations, which are also the
only part of a Core XPath query for which recursion is
needed in our encoding. As in [15], for each axis χ, we
can set up a basically fixed template program (modulo oc-
currences of IDB predicate P) defining a predicate χP with
the intuitive meaning

χP (x)← P (x0) ∧ χ(x0, x).

As TMNF with the given built-in relations provides all the
machinery to check a given predicate P on each of the
nodes of a region in the tree relevant to an axis, negated
axes χP (denoting the complement of the set of nodes to
which χP evaluates) can be encoded as well. We show im-
plementations of ChildP , ParentP , ChildP , and ParentP in
Figure 4 and an implementation of AncestorP in the exam-
ple of Figure 5.

First we provide the encoding for positive Core XPath,
2Even though extending monadic datalog with stratified negation

changes neither the complexity nor the expressiveness of the formalism.

i.e. for Core XPath without negation. This is precisely as
in [15]. Given a query π, we obtain a program computing
π by starting with the query predicate SR[[π]] and including
rules according to the patterns shown below until all IDB
predicates have been defined.

SR[[χ::P [e]]](x) ← χV (x) ∧ P (x) ∧ E [[e]](x).

SR[[/χ::P [e]]](x) ← χRoot(x) ∧ P (x) ∧ E [[e]](x).

SR[[π/χ::P [e]]](x) ← χSR[[π]](x) ∧ P (x) ∧ E [[e]](x).

Aux-SL[[P [e]]](x) ← P (x) ∧ E [[e]](x).

SL[[χ::P [e]]](x) ← χ−1
Aux-SL[[P [e]]](x).

Aux-SL[[P [e]/π]](x) ← SL[[π]](x) ∧ P (x) ∧ E [[e]](x).

SL[[χ::P [e]/π]](x) ← χ−1
Aux-SL[[P [e]/π]](x).

E [[π]](x) ← SL[[π]](x).

E [[e1 and e2]](x) ← E [[e1]](x) ∧ E [[e2]](x).

E [[e1 or e2]](x) ← E [[e1]](x). E [[e1 or e2]](x)← E [[e1]](x).

Note that as in the encoding of [15], query subexpres-
sions within brackets (i.e., conditions) are intuitively “re-
versed” (using the SL predicates and the axis inverses χ−1)
to direct all computation in the query tree towards the “hot
point” that selects nodes.

Now for negation, inside boolean condition expressions
(with “and”, “or” and “not” as operations and path expres-
sions assumed atomic), negations are pushed down as far as
possible using De Morgan’s laws (which of course do not
lead to an increase in formula size). Then, we proceed as
above with the additional rule templates

E [[not(π)]](x) ← SL[[π]](x).

SL[[χ::P [e]]](x) ← χ−1
Aux-SL[[P [e]]](x).

SL[[χ::P [e]/π]](x) ← χ−1
Aux-SL[[P [e]/π]](x).

Rules defining predicates such as Aux-SL[[P [e]/π]] can be
easily obtained by again applying De Morgan’s law, by
which the negation of a rule

P (x)← P1(x) ∧ · · · ∧ Pn(x).

becomes

P (x)← P1(x). . . . P (x)← Pn(x).

Even if not obvious from this rewriting-based discussion,
this translation can be carried out in linear time and logarith-
mic space. Figure 5 gives an example.

�

A natural restriction on Core XPath is to exclude nega-
tion. We call the language obtained positive Core XPath.
This fragment is also interesting as while both monadic dat-
alog and Core XPath are P-complete w.r.t. combined com-
plexity on tree-instances, positive Core XPath is LOGCFL-
complete and thus effectively parallelizable [17].

7

ChildRoot(x) ← Root(x0) ∧ First-Child(x0, x).

ChildRoot(x) ← ChildRoot(x0) ∧ Next-Sibling(x0, x).

SR[[/child::A[not(descendant::B)]]](x) ← ChildRoot(x) ∧ A(x) ∧ E [[not(descendant::B)]](x).

E [[not(descendant::B)]](x) ← SL[[descendant::B]](x).

SL[[descendant::B]](x) ← AncestorAux-SL[[B]](x).

AncestorAux-SL[[B]](x) ← Leaf(x).

AncestorAux-SL[[B]](x) ← First-Child(x, y) ∧ Aux-AncestorAux-SL[[B]](y).

Aux-AncestorAux-SL[[B]](x) ← AncestorAux-SL[[B]](x) ∧ Aux-SL[[B]](x) ∧ Last-Sibling(x).

Aux-AncestorAux-SL[[B]](x) ← AncestorAux-SL[[B]](x) ∧ Aux-SL[[B]](x) ∧

Next-Sibling(x, y) ∧ Aux-AncestorAux-SL[[B]](y).

Aux-SL[[B]](x) ← B(x).

Figure 5. Encoding for Core XPath query /child::A[not(descendant::B).A and B (and B) are predicates in the schema and
SR[[/child::A[not(descendant::B)]]] is the goal predicate.

4. Complexity and Evaluation of Monadic Datalog

In this section, we study the complexity of query evaluation
for TMNF and Core XPath on compressed instances. Edge
multiplicities, as introduced before, may lead to some diffi-
culty; we assume such multiplicities not to be present in the
instances of this section. Since they can have practical im-
pact on the compression rate (cf. [6]), we refer to Section 5
where a mapping of unranked trees with edge multiplicities
to binary trees is described.

Before we arrive at our main complexity results, we pro-
vide a polynomial-space algorithm that computes the pred-
icates derivable for a given node, compressed instance, and
TMNF program.

Let T be a tree-instance and v ∈ V T a node. Moreover,
let Tv denote the subtree of T rooted by v. Tv is again an
instance. Let X be a set of ground atoms and V a set of
nodes. Then, by X/V we denote {P (v) ∈ X | v ∈ V, P ∈
IDB(P)},X/v is short forX/{v}, and we abbreviateX/V T

as X/T.
In analogy to Tv (the subtree of T rooted by v), let Tv de-

note the complement (or envelope) of Tv , the tree obtained
by removing all of Tv from T except for v (which becomes
a leaf). Just like Tv, Tv is again a tree-instance.

The following central lemma now states a stronger ver-
sion of the fact that (a) in order to decide whether an atom
inside a subtree Tv can be derived with program P (i.e.
whether the atom is in TP

ω(T)), all we need to know is
the structure of Tv itself and the atoms that are derivable
for node v on T (i.e., the atoms of TP

ω(T)/v), and (b) the
converse fact with Tv and Tv exchanged.

The TP operator is nondeterministic, but we may com-

pose a particular run TP
k(X) into a new deterministic oper-

ator OP . We denote this by OP := (TP
k)[X]. We assume

OP to choose the same rules and nodes as the particular run
of TP

k in the same order. We extend the applicability of
OP to sets of ground atoms Y ⊂ X by stepping over rules
that cannot fire because their bodies are not satisfied in Y
without doing anything.

Lemma 8. Let P be a TMNF program, T a tree-instance,
andOP := (TP

k)[T]. Then,

OP(T)/Tv
= OP(Tv ∪ OP(T)/v)

and
OP (T)/Tv

= OP (Tv ∪ OP(T)/v).

Proof of Lemma 8 (Sketch): By induction on the k steps of
the operator. There are two cases of rules. In the first (which
corresponds to TMNF rule templates (1) and (4)), the body
contains only a single variable. Thus, the rule application
has only strictly local impact, on a single node. In the sec-
ond case (corresponding to TMNF rule templates (2) and
(3)), a rule has at most one single binary atom and a single
further IDB atom in the body (which may depend on pre-
viously derived facts). Here, a new fact P (v) may enable
the derivation of facts on different nodes, but as an imme-
diate consequence, only facts on nodes adjacent in T w.r.t.
the First-Child or Next-Sibling relations can be inferred. An
atom P (v) can only contribute to the derivation of another
atom Q(w), where v and w are not adjacent in T, if first a
trace of new atoms is computed for each of the nodes on the
undirected path from v to w in T. Let v′ be a node on this
undirected path between v and w, and P ′(v′) this witness

8

function fixp(v0: node,
X0: set of ground IDB atoms over v0,
k: integer≥ 0)

/* let v0 have n ≥ k children v1 . . . vn */
returns set of ground IDB atoms over vk

begin
X := X0 ∪ T/{v0,v1,...,vn};
while no fixpoint reached do

X := TP(X) ∪
fixp(v1, X/v1 , 0) ∪ · · · ∪ fixp(vn, X/vn

, 0);
return X/vk

;
end.

Figure 6. The function fixp.

atom following from P (v). Then, subsequently, it suffices
to know P ′(v′) to infer Q(w); P (v) is not needed.

�

Lemma 9. Let T be a tree-instance, v0 ∈ V T a node with
n ≥ 0 children v1 . . . vn,X0 a set of ground IDB atoms over
node v0, and 0 ≤ k ≤ n an integer. Then, the pseudocode
of Figure 6 defines the function

fixp(v0, X0, k) = TP
ω(Tv0 ∪X0)/vk

which satisfies the two equations

TP
ω(T)/root = fixp(root, ∅, 0)

TP
ω(T)/vk

= fixp(v, TP
ω(T)/v, k).

Proof of Lemma 9: By induction on the tree (bottom-up):

– (Induction start) Let v0 be a leaf. Tv0 is a tree with only
a single node, so Tv0 interpreted as a set of ground
atoms only consists of unary atoms over v0, and the
same is true for X0 ∪Tv0 . fixp(v0, X0, k = 0) (k must
be 0 because there are no children.) initially sets X
to X0 ∪ Tv0 and then iterates X := TP(X). Note
that since X at all times only contains unary atoms,
only rules of types 1 and 4 can fire. When a fixpoint is
reached (which must be reached eventually), X/v0 is
returned. Thus, fixp(v0, X0, 0) = TP

ω(X0 ∪ Tv0)/v0,
as claimed.

– (Induction step) Let v0 be a non-leaf node. We rewrite
the pseudocode of Figure 6 by replacing the recursive
calls to fixp using the induction hypothesis. By our
induction hypothesis, the pseudocode

X := X0 ∪ T/{v0,v1,...,vn};
while no fixpoint reached do

X := TP(X) ∪
TP

ω(Tv1 ∪X/v1)/v1 ∪ · · · ∪
TP

ω(Tvn
∪X/vn

)/vn
;

return X/vk
;

obtained must equally compute fixp(v0, X0, k).

Clearly, the while-loop converges to a fixpoint, with
TP and set unions monotonically increasing and the
set of ground atoms finite.

By the first part of Lemma 8, it is safe to decompose
the computation of TP

ω(Tv0 ∪ X0)/vk
into the local

processing of the region of T consisting of v0 and its
children v1 . . . vn and the separate processing of their
subtrees Tv1 . . .Tvn

using the fixp function.

It is essential to observe that X at all times only con-
sists of the part of the tree structure that only involves
nodes v0, v1, . . . , vn as well as unary atoms over the
same nodes. Because of the limited syntax of TMNF,
rules of types 2 and 3 involving binary predicates can
only (and only have to) unify with neighbouring nodes
in the tree – either parents and their children or ad-
jacent siblings. Therefore, all rules that can fire on
Tv0 involving v0 and its children will already fire on
T/v0,v1,...,vn

given that the iterative computation of
TP

ω(Tvi
∪ X)/vi

on the children (1 ≤ i ≤ n) con-
tributes the atoms over the child nodes vi that can be
computed in the subtrees Tvi

, possibly given atoms
over vi computed locally on T/v0,v1,...,vn

.

Whenever TP(X) adds a new ground atom over a
child node vi (i ≥ 1) to X , TP

ω(Tvi
∪ X/vi

)/vi

is re-computed immediately afterwards to make sure
that all consequences over node vi from that atom
that may be due to inferences in Tvi

are added to
X . Therefore, the while-loop only terminates when
X = TP

ω(Tv0 ∪X0)/v0,v1,...,vn
. Our claim follows.

Thus, Figure 6 indeed defines the function

fixp(v0, X0, k) = TP
ω(Tv0 ∪X0)/vk

.

Since Troot = T, TP
ω(T)/root = fixp(root, ∅, 0). Moreover,

by Lemma 8, TP
ω(T)/vk

= fixp(v, TP
ω(T)/v, k) (where

vk is the k-th child of v).
�

This provides us with an algorithm to compute
TP

ω(T)/v for an arbitrary v given its edge-path Π(v) =
k1 · · · km. It simply starts from fixp(root, ∅, 0) and itera-
tively calls the fixp function for each of the segments ki of
Π(v), always using the result of the previous call as the sec-
ond and ki as the third argument.

Note that differently from Figure 6, the second argument
as well as the return value in the implementation of Fig-
ure 7 is of type “set of predicates” rather than “set of atoms”.
Moreover, we make the recursive calls to fixp more intelli-
gently, that is, only when new atoms have been derived at a
child node and there is a chance of fixp inferring something
new.

9

function fixp(node v, set of predicates F , integer k ≥ 0)
returns set of predicates

begin
F0 := F ∪ {P | P (x)← U(x). in P , U holds at v};
let n be the number of children of v;
for each child vi of v (1 ≤ i ≤ n) do

Fi := fixp(vi, ∅, 0);

while no fixpoint of F0 reached do
begin

if P (x)← P1(x) ∧ P2(x). in P
and P1, P2 ∈ F0 then

F0 := F0 ∪ {P};

if P (x)← P0(x0) ∧ First-Child(x0, x). in P ,
n ≥ 1 and P0 ∈ F0 then

F1 := fixp(v1, F1 ∪ {P}, 0);

if P (x)← P0(x0) ∧ First-Child(x, x0). in P ,
n ≥ 1 and P0 ∈ F1 then

F0 := F0 ∪ {P};

if P (x)← P0(x0) ∧ Next-Sibling(x0, x). in P ,
P0 ∈ Fi and 1 ≤ i < n then

Fi+1 := fixp(vi+1, Fi+1 ∪ {P}, 0);

if P (x)← P0(x0) ∧ Next-Sibling(x, x0). in P ,
P0 ∈ Fi and 1 < i ≤ n then

Fi−1 := fixp(vi−1, Fi−1 ∪ {P}, 0);
end;
return Fk;

end.

Figure 7. A more detailed implementation of fixp.

Algorithm 4.1 (Evaluation of monadic datalog)
Input: A program P , an instance I, and a node v ∈ Π(V I)
(that is, v is a node of T (I) expressed as an edge-path).
Output: The set of IDB predicates for v that can be derived
using P on T (I).
Method:

Let k1 . . . km be the edge-path defining v (m ≥ 0);
w := rootI; F := fixp(w, ∅, 0); i := 1;
while i ≤ m do
begin

F := fixp(w, F , ki).
w := the ki-th child of w;
i := i+ 1;

end;
Output F .

(a)

0

0 1

0 1 0 1

1

10

0 1 0 1

(b)

1

1

10

0

0

Figure 8. Instance for QSAT encoding (three variables).

where the auxiliary function

fixp : V I × 2IDB(P) × {0, 1, 2, 3, . . .} → 2IDB(P)

is given in Figure 7.
�

Theorem 10. Given a TMNF program P , an instance I,
and a node v ∈ T(I), the set {P (v) ∈ TP

ω(T(I))} can
be computed in space O(||I|| ∗ |IDB(P)|).

Proof of Theorem 10 (Sketch): The space requirements of
the above-described algorithm are dominated by those of
the fixp function. This function in turn only considers
very localized regions of the instance at any point in time,
namely a node v plus its children. It is recursive, and there-
fore depth(T(I)) fixp activation records may have to be kept
on the stack. The total space required may at most amount
to the number of nodes of a path from the root to a leaf
plus all of their siblings (times space to store a set of pred-
icates of size at most |IDB(P)|). Such a fragment of an
instance has the same size no matter whether compressed
or not. Thus, we obtain the space bound indicated in The-
orem 10. Note that our algorithm proceeds in exactly the
same way no matter whether the instance is a tree or com-
pressed.

�

Evaluating Core XPath (and thus TMNF) on compressed
instances is also PSPACE-complete:

Theorem 11. The evaluation problem for both monadic
datalog and Core XPath over compressed instances is
PSPACE-complete. Positive Core XPath over compressed
instances is NP-complete.

Proof of Theorem 11: PSPACE-membership for TMNF is
asserted in Theorem 10, and Core XPath inherits this upper
bound by Proposition 7. We show the PSPACE-hardness
of both languages by providing a logspace-reduction from
QSAT to the decision problem for Core XPath query evalu-
ation.

Given a (closed) quantified boolean formula

Q1x1 · · ·Qnxnϕ

(where Q1, . . . , Qn ∈ {∀, ∃} and ϕ is quantifier-free), the
instance is as shown in Figure 8 for n = 3 variables and has
schema σ = {0, 1}.

10

The query is /self::*[Q1 child[· · · [Qn child[ϕ′]]· · ·]],
where ∃ child[ψ] rewrites into child::*[ψ] and ∀ child[ψ]
rewrites into not(child::*[not(ψ)]). ϕ′ is obtained from the
boolean formula ϕ by substituting ∧, ∨, and ¬ by “and”,
“or”, and “not()”, respectively, and each variable xi by
parent::*/· · · /parent::*/self::1, where the number of appli-
cations of the parent axis is n− i.

It is not difficult to see that this is indeed a correct en-
coding of QSAT, i.e. the query selects the root node if and
only if the QSAT formula is true.

For example, the query for the QSAT formula

∀x1∃x2(¬x1 ∨ x2) ∧ (x1 ∨ ¬x2)

(which is true) is

/self::*[not(child::*[not(child::*[ϕ′])])]

with

ϕ′ = (not(parent::*/self::1) or self::1) and

(parent::*/self::1 or not(self::1)).

The instance serves as a compressed version of a proof tree
for the QSAT formula, where a node label (either 0 for
“false” or 1 for “true”) at a node at depth i + 1 in the tree
denotes a valuation of propositional variable xi. In our ex-
ample, which can also be written as ∀x1∃x2(x1 ⇔ x2), the
query selects the root node because both the left child of the
root node labeled 0 and the right child labeled 1 (∀x1) have
a child (∃x2) with their respective label (x1 ⇔ x2).

The NP-hardness of positive Core XPath follows imme-
diately from the encoding of the previous proof, in which
we can still encode SAT (i.e., all quantifiers are existential)
without negation. Negation inside ϕ can be pushed down to
the variables using De Morgan’s laws, where we can rewrite
e.g. not(parent::*/self::1) as parent::*/self::0. For instance,
we can write ϕ′ equivalently as

(parent::*/self::0 or self::1) and (parent::*/self::1 or self::0).

Membership in NP follows from the following observa-
tion. LetQ be a query and v be the node for which member-
ship in the query result is to be checked. If negation is not
present in Q, it can be matched in the instance I iff it can
be matched on a small subtree of T(I) containing v. This
“witness” tree is of polynomial size: it is at most as deep
as I and is defined by a subset of Π(V I) of cardinality at
most the number of nodes of the query tree of Q (basically
corresponding to the number of operations such as axis ap-
plications and node tests performed in Q).

Indeed, no more than a subtree of this size can matter
in the evaluation of such a query. The remaining parts of
tree T(I) must be ignored and “jumped over” by the axis
applications.

All we now need to do is guess such a witness tree and
executeQ on it (for which we have a polynomial-time algo-
rithm [16]).

�

Finally, we look at the problem of finding a practical
(time-efficient) algorithm that evaluates a TMNF program
P on a compressed instance, i.e., which produces a bisimi-
lar instance to the nodes of which the fixpoint of P has been
attached (employing partial de-compression).

Analogously to Definition 3 (but now, a datalog program
selects several sets of nodes, one for each IDB predicate),
we assume that the evaluation problem for program P on
instance I is to find a bisimilar instance J over schema σ ∪
IDB(P) such that T(J) = TP

ω(T(I)) (where we slightly
abuse notation).

Theorem 12. LetP be a TMNF program and I an instance.
Then, an instance J s.t. T(J) = TP

ω(T(I)) and |V J| ≤
2|IDB(P)| ∗ |V I| can be computed in time O(|P| ∗ ||J||).

Proof of Theorem 12: We assume the following data struc-
ture for representing nodes of an instance I. For practical
reasons (nodes and thus atoms true on them may have to
be copied), we store inferred ground atoms with the nodes
rather than in the set Ω used in the algorithm of Figure 3.
Each node v ∈ V I has a set Preds(v) of boolean flags and a
list children(v) of references to nodes from V I associated
with it. By children(v)[i], we access the i-th child of node
v.

We make a number of changes to the algorithm of Fig-
ure 3. One is that we populate the Preds(v) sets rather
than the set Ω: In the initialization phase, for each rule
P (x)← U(x). of the first kind and each node v,

Preds(v) := {P | U is true on v}

In the while-loop, given that we infer a new atom P (v), we
add predicate P to Preds(v) rather than P (v) to Ω. This is
now done immediately when P (v) is inferred and put on the
queue W , rather than later, when it is taken off W . (This is
necessary because depending on the way P (v) is inferred,
v may have to be split into two nodes).

In the following, we say that two nodes v and w are
equivalent if Preds(v) = Preds(w) and children(v) =
children(w). (That is, children(v) and children(w) have
the same number of elements n and children(v)[i] and
children(w)[i] denote the same nodes – rather than just
equivalent nodes – for all 1 ≤ i ≤ n.)

We define a function make(v, P) which

– copies node v to a new node v′ (including the list
children(v)),

– adds predicate P to Preds(v′), and

11

– returns v′ if no node w equivalent to v′ exists in the
instance3 (otherwise, it deletes v′ again and returnsw).
Let u be the node returned. Then, “make” also puts
P (u) onto W .

If a copy v′ is returned, the v entries in the data struc-
ture Aux4 (to find those in constant time, an additional
data structure is needed) are copied as well.

For rules of types 2 and 3 in the first for-loop inside the
while-loop, we distinguish four cases.

case P (x)← P0(x0) ∧ First-Child(x0, x). :
if P0 ∈ Preds(v) and v is not a leaf then

children(v)[1] := make(children(v)[1], P);

case P (x)← P0(x0) ∧ First-Child(x, x0). :
if P0 ∈ Preds(children(v)[1]) then
{

Preds(v) := Preds(v) ∪ {P};
add P (v) to W ;

}

case P (x)← P0(x0) ∧ Next-Sibling(x0, x). :
if P0 ∈ Preds(children(v)[i]) and i < |children(v)| then

children(v)[i+ 1] := make(children(v)[i+ 1], P);

case P (x)← P0(x0) ∧ Next-Sibling(x, x0). :
if P0 ∈ Preds(children(v)[i]) and i > 1 then

children(v)[i− 1] := make(children(v)[i− 1], P);

The second for-loop handling rules of type 4 remains es-
sentially as in Figure 3.

Given appropriate data structures as we have assumed
them earlier, this modified algorithm runs in time O(|P| ∗
||J||), for the same reasons why the algorithm of Figure 3
runs in time linear in the size of the output times the size of
the program. Note that the instance can only grow by split-
ting nodes and will never shrink; however, since we always
check whether a split is necessary or whether an existing
node can be re-used, the instance de-compresses to at most
the size 2|IDB(P)| ∗ ||I||.

Note that in this simple form, the algorithm may leave
some nodes in the instance that are unreachable from the
root, and which need to be garbage-collected in the end.
These “lost nodes” do not invalidate our claim about the
running time O(|P| ∗ ||J||), as they are accounted for by the
factor |P|.

�

This result is based on a variation of Minoux’ algorithm
[22] (for evaluating propositional logic programs) in which
we lazily – only when needed – compute propositional rules

3Here, for practical purposes, we assume a hash table of existing nodes
in which we can find nodes in constant time.

(by instantiating the rules ofP using the instance). The sim-
ple syntax of TMNF greatly facilitates this lazy grounding
of the program.

5. Binary Structures

The concise representation of multiple consecutive edges
(just storing one edge together with a multiplicity) causes
a number of problems. One way to get around these is
to transform arbitrary instances into binary instances first
and then only to work with these binary instances. In a bi-
nary instance we can store all edges explicitly, so there is
no need for the multiplicities. For each instance I we define
a binary instance B(I) as follows: We first replace a vertex
with i children by an almost complete binary tree of height
2dlog(i)e, as indicated in Figure 9. The binary instance B(I)
has an additional unary relation that contains all vertices of
the original instance I. All other unary relations of I can be
directly transferred to B(I).

Figure 9.

We omit a formal definition of B(I). The following
proposition is crucial. Its proof is straightforward; Figure 10
illustrates why there will be a blow-up in size logarithmic
in the maximum edge multiplicity.

7

Figure 10.

Proposition 13. There is an algorithm that, given an in-
stance I, computes a binary instance B equivalent to B(I)
in time O

(

||I|| · log(mult(I))
)

.

Proof of Proposition 13: Let I be an instance and v ∈ V I

with
γ(v) = wm1

1 wm2
2 . . . wmk

k ,

where w1, . . . , wk ∈ V I such that wi 6= wi+1 for 1 ≤ i ≤
k. Then we have mi ≤ mult(I) for 1 ≤ i ≤ k. Let m =
∑k
i=1 ki and h = dlog(m)e.
In the transformation from T(I) to B(T(I)), vertex v and

its m children are replaced by a subtree S of height h with

12

m leaves. We claim that in the compressed binary instance
M(B(I)) = M(B(T(I))), this subtree S is compressed to a
subinstance S′ with O(k · log(mult(I))) vertices.

To prove this claim, we assume without loss of gen-
erality that m = 2h. If this is not the case, we can
simply add a dummy vertex wk+1 and the let γ(v) =

wm1
1 . . . wmk

k w2h−m
k+1 . Then S is a complete binary tree of

height h. The ith level of S and S′ consists of all vertices
whose distance from v (the root of S) is i.

We observe the following:

(1) On each level of S there are at most 2k−1 bisimilarity
classes of vertices (i.e., at most 2k− 1 vertices that are
pairwise not bisimilar). Thus each level of S′ contains
at most 2k − 1 vertices.

(2) For 0 ≤ ` ≤ h, the first ` levels of S contain 2`+1 − 1
vertices alltogether. Thus the first ` levels of S′ contain
at most 2`+1 − 1 vertices.

Now let ` = dlog(k)e. Then S′ contains at most

(2`+1 − 1) + (h− `)(2k − 1)

≤ (8k − 1) + (log(m)− log(k))(2k − 1)

= (8k − 1) + log
(m

k

)

(2k − 1)

= (8k − 1) + (log(mult(I))(2k − 1))

= O(k · log(mult(I))).

This completes the proof of the claim.
Noting that, given v and γ(v), it is easy to compute S′ in

time linear in the size of S′, the statement of the proposition
follows.

�

Remark 14. Note that if we used a logarithmic cost model,
then the logarithmic factor in Proposition 13 could be
avoided, because storing m parallel edges would then re-
quire space and time Θ(log(m)).

While the binary instance computed by the algorithm in
Proposition 13 may be larger by a factor of log(mult(I))
than the original instance, it is not clear that it will be larger
in practice. Indeed, after being minimised it may be expo-
nentially smaller than the original instance, even if that was
also minimal. The following example illustrates this.

Example 15. Let σ = {P,Q}. For ` ≥ 1, let I` be the
following instance: I has 3 vertices r, p, q. r is the root and
p, q are leaves. γ is defined by γ(r) = (pq)2

`

, γ(p) =
γ(q) = ∅. Furthermore P = {p} and Q = {q}. The right
hand side of Figure 11 shows I3.

It is easy to see that I` is minimal and that ||I`|| ∈
O(2`). However, as Figure 11 illustrates, the minimal in-
stance M(B(I`)) bisimilar to the binary instance B(I`) has
size O(`).

r

p q

r

p q
p q

r

Figure 11. The instance I3 of Example 15, the binary
instance B(I3), and its minimisation M(B(I3)).

Translating queries in TMNF or MSO into queries over
the corresponding binary instances is easy, so it may be well
worth working with binary instances only.

Let B−1 be the transformation that intuitively reverses
the translation from unranked into binary instances and
identifies each (non-auxiliary) node of B(T) with the node
of T that it originates from. We assume that the schema
of B(T) contains a predicate V T that selects the nodes cor-
responding to the orginal nodes of T, but not the auxiliary
nodes introduced to obtain a binary tree.

Lemma 16. Let P be a TMNF program. Then there is a
TMNF program P ′ such that for all tree-instances T,

TP
ω(T) = B−1({P (v) ∈ T ωP′(B(T)) | P ∈ IDB(P)}).

P ′ can be computed simultaneously in logarithmic space
and linear time.

Proof of Lemma 16: We have to translate all occurrences
of the predicates encoding the tree structure (i.e., the unary
predicates Root, Leaf and Last-Sibling and the binary predi-
cates First-Child and Next-Sibling) to obtain the correct be-
haviour over binary instances.

The Root and Leaf predicates remain the same on bi-
nary instances. The binary-instance version of Last-Sibling
(called Bin-Last-Sibling below) can be defined by the fol-
lowing fixed program:

Aux0(x) ← V T(x).

Aux1(x) ← Aux0(x0) ∧

Second-Child(x0, x).

Aux2(x) ← Aux0(x0) ∧

Last-Sibling(x0).

Aux1(x) ← Aux2(x0) ∧

First-Child(x0, x).

Aux0(x) ← Aux1(x) ∧ V T(x).

Bin-Last-Sibling(x) ← Aux1(x) ∧ V
T(x).

Bin-Last-Sibling(x) ← Root(x).

The idea of this encoding is to start at a parent node and
to find its last child by following the rightmost edge-path
down, moving to the second child whenever one exists and
only otherwise moving to the first child.

13

As all IDB predicates have to be unary and we thus can-
not define a binary relation as a predicate, we have to rewrite
rules containing binary predicates. There are four cases; we
discuss two (the “forward” cases using TMNF rules of the
second kind); the remaining two can be encoded similarly.

Consider the rule

P (x)← P0(x0) ∧ First-Child(x0, x).

In the binary version we essentially have to say that x is the
first First-Child-descendent of x0 such that V T(x) holds.
Therefore, we replace this rule by the following. Note that
for every rule we have to introduce a new predicate Aux-P0.

Aux-P0(x) ← P0(x0) ∧ First-Child(x0, x).

Aux-P0(x) ← Aux-P0(x0) ∧ V T(x0) ∧

First-Child(x0, x).

P (x) ← Aux-P0(x) ∧ V
T(x).

Accordingly, we proceed for a rule

P (x)← P0(x0) ∧ Next-Sibling(x0, x).

where we essentially check if x0 is a Last-Sibling, and if so,
we move to its parent if that parent is not in V T. Once we
have found a non-Last-Sibling node, we go to its next sib-
ling, and from there follow the First-Child path down. We
select the first node in V T we encounter. In particular, we
replace the above rule by the following program fragment:

Aux1-P0(x) ← P0(x0).

Aux2-P0(x) ← Aux1-P0(x) ∧ Last-Sibling(x).

Aux3-P0(x) ← Aux2-P0(x0) ∧ First-Child(x, x0).

Aux3-P0(x) ← Aux2-P0(x0) ∧ Second-Child(x, x0).

Aux1-P0(x) ← Aux3-P0(x) ∧ V T(x).

Aux4-P0(x) ← Aux1-P0(x0) ∧ First-Child(x, x0).

Aux5-P0(x) ← Aux4-P0(x0) ∧ Second-Child(x0, x).

Aux5-P0(x) ← Aux5-P0(x0) ∧ V T (x0) ∧

First-Child(x0, x).

P (x) ← Aux5-P0(x) ∧ V
T(x).

It is easy to see that this transformation can be done in
logarithmic space and linear time.

�

Proposition 17. Let I be an instance and Q a query in
TMNF or MSO. Then, a query Q′ in the same language
can be computed in logarithmic space and linear time s.t.
Q(I) = Q′(B(I)).

Proof of Proposition 17: For TMNF, the result follows im-
mediately from Lemma 16, which makes an even stronger

statement (namely that the translation correctly encodes all
IDB predicates of P , not just a single query predicate).

For MSO, we can directly take the encoding of a binary
predicate B in TMNF and define a new binary relation ϕB
in MSO with two free variables. In order to do that, we
simply take the program Pr encoding rule r:

P (x)← P0(x0) ∧B(x0, x).

and interpret← and ∧ as implication and logical conjunc-
tion in MSO. Let X̄ := IDB(Pr) and

ΨB(X̄) :=
∧

{∀x̄ : r | r ∈ PP0,B,P ,

x̄ consists of the variables in r}

Now,

ϕB(x, y) := ∀X̄
(

(x ∈ P0 ∧ΨB(X̄))→ y ∈ P
)

.

Given the TMNF program PLast-Sibling encoding
Last-Sibling through the IDB predicate P , we proceed
as above to obtain the FO-formula ΨLast-Sibling. Let
X̄ := IDB(PLast-Sibling). We define

ϕLast-Sibling(x) := ∀X̄
(

ΨLast-Sibling(X̄)→ x ∈ P
)

.

By replacing all occurrences of First-Child, Next-Sibling
and Last-Sibling using the unary and binary relations de-
fined in this way, we obtain the desired translated MSO
query.

�

Core XPath is not expressive enough to accommodate
such a translation (consider, for example, the very simple
query /descendant::A/child::B), but this is not a problem
as we translate all Core XPath queries into TMNF in our
framework anyway.

Experimental Results on Binary Instances.
We have carried out a number of experiments on XML

corpora, comparing the compression achieved using our no-
tion of binary instances with instances compressed using
multiple edges.

To assess the merits of our framework for binary struc-
tures, we have extended the XML compression module of
the XPath query engine discussed in [6] to create binary
structures in the way discussed in Section 5. We have run
this compressor on a number of standard corpora (see [6]).
The benchmark results can be found in Figure 12. This table
is interpreted as follows.

– The first (left-most) column provides the name and
size of the corpus.

– The second column states the number of nodes in the
XML tree. (Subtract one to obtain the number of
edges.)

14

bisimilarity bisimilarity & bisimilarity on include
only edge multiplicities binary instances XML tags?

|V T| |V M(T)| |EM(T)| |V M(T)| |EM(T)| |V M(T)| |EM(T)|
SwissProt 10,903,569 83,427 1,731,391 83,427 792,620 352,185 683,153 no
(457.4 MB) 85,712 1,751,930 85,712 1,100,648 371,650 721,429 yes
DBLP 2,611,932 321 272,573 321 171,820 72,020 143,951 no
(103.6 MB) 4,481 379,524 4,481 222,755 114,000 227,470 yes
TreeBank 2,447,728 323,256 909,875 323,256 853,242 504,759 966,591 no
(55.8 MB) 475,366 1,315,645 475,366 1,301,690 783,177 1,505,197 yes
OMIM 206,454 962 25,173 962 11,921 8,430 16,744 no
(28.3 MB) 975 25,173 975 14,416 8,549 16,949 yes
XMark 190,488 3,642 28,901 3,642 11,837 9,292 17,238 no
(9.6 MB) 6,692 39,180 6,692 27,438 15,080 27,329 yes
Shakespeare 179,691 1,121 40,855 1,121 29,006 15,806 31,381 no
(7.9 MB) 1,534 48,385 1,534 31,910 18,022 35,688 yes
Baseball 28,307 26 665 26 76 104 199 no
(671.9 KB) 83 1,378 83 727 469 834 yes
TPC-D 11,765 15 357 15 161 196 378 no
(287.9 KB) 53 361 53 261 303 507 yes

Figure 12. Degree of compression of benchmarked corpora.

– The third and fourth columns provide the number of
nodes and edges in the instance compressed using just
bisimilarity, respectively.

For each corpus, we present in two rows

– in the upper row, the size of the compressed in-
stance when XML node tags were ignored (i.e.,
only the bare tree structure is compressed, with-
out any labeling information) and

– in the lower row, the size of the compressed in-
stance with all XML node tags inserted.

– Columns 5 and 6 report the size of the instance (nodes
and edges, respectively) compressed using edge multi-
plicities.

– Finally, columns 7 and 8 state the size of the instance
(nodes and edges, respectively) compressed as a binary
instance.

Our experiences with the prototype implementation of
[6] are that in order to achieve good query performance with
unranked instances, in the data structures we come up with,
the amount of memory required for a node is approximately
the same as for an edge. Thus, to estimate the size of an
unranked instance, one best adds up the node and the edge
count of the instance.

We observe that binary instances compress quite well;
the compression seems to compare the more favorably the
larger the corpora get. Together with the fact that binary

instances can be represented more efficiently in memory
(the data structures required to represent nodes and edges
have one degree of freedom less than unranked instances –
each node only needs two fixed-size pointers to children,
rather than an associated adjacency list), binary instances
seem to be an interesting alternative to unranked instances
compressed using multiple edges.

It is convenient to represent binary instances as rela-
tional structures in a slightly different way than arbitrary
instances. We represent the edges of the DAG by two bi-
nary relations First-Child and Second-Child, representing
the first-child and second-child relation.

In the following, we will give versions of our results for
both unranked instances with edge multiplicities and binary
instances.

6. Yet Another Query Automaton

The idea of querying XML-documents by tree automata is
not new (e.g., [26, 18]). Some care needs to be taken, be-
cause in this context we are facing two problems usually not
considered in classical language theory: Tree instances are
not necessarily binary, but may be unranked, and queries
select subsets of a tree and do not just accept or reject. Of
course both of these problems can easily be resolved (and
have been resolved in various ways, see e.g. [3, 12, 26]). We
handle unranked trees simply by viewing them as binary
trees under the First-Child and Next-Sibling relation. Our

15

way of handling unary queries is similar to the approach
proposed by Neven and Schwentick [26] in their query au-
tomata: certain states are selecting states that select the ver-
tices in the answer of the query. However, beyond this su-
perficial similarity the two querying mechanisms are quite
different.

A non-deterministic (bottom-up) tree automaton is a tu-
ple A = (Q,Σ, F, δ), where Q is the state space, Σ is the
alphabet, F ⊆ Q is the set of accepting states, and

δ : Σ ∪ (Q× Σ) ∪ (Q×Q× Σ)→ 2Q

the transition function. Tree automata work on binary trees
in the usual way. Note that the transition function is defined
in such a way that it accommodates leaves, nodes with one
child, and nodes with two children. However, if a node has
only one child, there is no way to distinguish between this
child being a left or right child.

A σ-tree automaton is a nondeterministic tree-automaton
A = (Q,Σ, F, δ) with Σ = 2σ, that is, a tree-automaton
that runs on tree instances of schema σ. If T is a σ-tree
instance and t ∈ V T, we often write Σ(t) to denote the
“symbol” {R ∈ σ | t ∈ RT} ∈ Σ = 2σ.

We can let the same tree automaton run on binary trees
and on unranked trees, viewing the latter as binary trees
with respect to the first-child and next-sibling relation. In
the following, we treat binary trees in some details and then
briefly explain how the approach extends to unranked trees.

6.1. Binary instances. A run of a σ-tree automaton A =
(Q,Σ, F, δ) on a binary tree instance T of schema σ is a
mapping ρ : V T → Q such that:

– For all leaves t ∈ V T we have ρ(t) ∈ δ
(

Σ(t)
)

.

– For all nodes t ∈ V T with one child t1 we have

ρ(t) ∈ δ
(

ρ(t1),Σ(t)
)

.

– For all nodes t ∈ V T with two children t1, t2 we have

ρ(t) ∈ δ
(

ρ(t1), ρ(t2),Σ(t)
)

.

The run ρ is accepting if ρ(rootT) ∈ F . The automaton A

accepts T if there is an accepting run for A on T.
To be able to define unary queries, we need to enhance

tree automata by an additional mechanism for selecting
nodes.

Definition 18. A selecting σ-tree automaton (σ-STA) is a
tuple A = (Q,Σ, F, δ, S), where (Q,Σ, F, δ) is a σ-tree
automaton and S ⊆ Q a set of selecting states.

The unary query defined by a σ-STA A maps every σ-
tree T to the set

A(T) =
{

v ∈ V T | every accepting run of A on T is in
a selecting state at vertex v

}

.

At first sight, this querying mechanisms may seem a bit
artificial. However, it turns out that STAs have good algo-
rithmic properties and provide a nice unifying framework
for the languages considered here. Still, requiring all ac-
cepting runs to be in a selecting state seems somewhat ar-
bitrary. We shall see below that we may equivalently re-
quire at least one accepting run to be in a selecting state
(cf. Corollary 21). Of course it would even be better if we
could simply use deterministic tree automata.4 The follow-
ing example shows that this would not be sufficient.

Example 19. Let EVEN-DEPTH be the query of schema ∅
defined by

EVEN-DEPTH(T) = {v ∈ V T | depth(v) is even}

where the depth of a vertex in a tree is the length of the path
from the root to this vertex.

EVEN-DEPTH is clearly definable by an STA. It is not
definable by an deterministic STA, though. To see this, just
note that because there is only one run of an STA on ev-
ery tree, for a query defined by a deterministic STA it only
depends on the subtree below a vertex whether the vertex
belongs to the answer set or not.

Neven and Schwentick’s [26] query automata are deter-
ministic, but the price for this is that a run of a query au-
tomaton may go up and down the tree several times. As the
following result implies, both types of automata have the
same querying power.

Theorem 20 (see also [23]). A query (on binary tree-
instances) is definable in MSO if, and only if, it is definable
by an STA.

Proof of Theorem 20: For the forward direction (i.e., that
for every unary MSO query there exists an equivalent STA),
we use the well known fact that a class of binary trees is de-
finable in MSO if and only if it is recognisable by a tree
automaton [9, 28]. It implies that for every MSO-formula
ψ(X) of vocabulary σ ∪ {First-Child, Second-Child} for
some schema σ there is a binary σ ∪ {X}-tree automaton
Aψ such that for all binary σ-tree instances T and for all
subsets U ⊆ V T we have

(T, U) |= ψ(X) ⇐⇒ Aψ accepts (T, U).

Here (T, U) denotes the expansion of T to the σ ∪ {X}-
instance in which X is interpreted by U . Now let ϕ(x) be
an MSO-formula with one free variable x. Let ψ(X) =

4A tree automaton is deterministic if δ(q̄, a) is a one-element set for
all (ā, q) ∈ Σ ∪ (Q × Σ) ∪ (Q × Q × Σ). The usual powerset con-
struction shows that for every (nondeterministic) tree automaton � there is
a deterministic tree automaton � ′ equivalent to � , in the sense that � and

� ′ accept the same trees.

16

∀x(ϕ(x) → Xx). Then

ϕ(T) =
⋂

{U ⊆ V T | (T, U) |= ψ(X)}.

Suppose Aψ = (Q, 2σ∪{X}, F, δ). Let A be the selecting
σ-tree automaton (Q×{0, 1}, 2σ, F ×{0, 1}, δ′, Q×{1}),
where δ′ is defined by

δ′((q1, ε1), (q2, ε2), a) =
(

δ(q1, q2, a)× {0}
)

∪
(

δ(q1, q2, a ∪ {X})× {1}
)

for all q1, q2 ∈ Q, ε1, ε2 ∈ {0, 1}, a ∈ 2σ (similarly for
δ(a) and δ′(q, a)). Then accepting runs of A on a tree T
correspond to accepting runs of Aψ on expansions (T, U)
of T. Therefore,

A(T) =
⋂

{U ⊆ V T | Aψ accepts (T, U)} = ϕ(T).

For the converse direction, let A = (Q, 2σ, F, δ, S) be a
σ-STA with Q = {q1, . . . , qk}. A run ρ of A on a binary
σ-tree instance T can be described by a tuple (U1, . . . , Uk)
of subsets of V T, where v ∈ Ui if ρ(v) = qi. It is easy
to define a first-order formula ψ(X1, . . . , Xk) saying that
(X1, . . . , Xk) describes an accepting run. Then

ϕ(x) = ∀X1 . . . ∀Xk

(

ψ(X1, . . . , Xk)→
∨

i
qi∈S

Xix
)

defines the same query as A.
�

Corollary 21 (see also [23]). For every STA A there exists
an STA A′ such that for all binary tree instances T,

A(T) =
{

v ∈ V T | there exists an accepting run of A′

on T that is in a selecting state at
vertex v

}

.

Proof of Corollary 21: Theorem 20 implies that the nega-
tion of a query defined by an STA can also be defined
by an STA. Let B = (Q, 2σ, F, δ, S) be an STA defin-
ing the negation of the query defined by A. Let A′ =
(Q, 2σ, F, δ,Q \ S). It is easy to see that A′ has the desired
property.

�

Since monadic datalog is contained in MSO, Theorem 20
also implies that for every monadic datalog program there is
an STA defining the same query. In the following example,
we give a direct construction of such an automaton for a
given datalog program, which of course is more efficient
than the one going through MSO.

Example 22. Let σ be a schema and X1, . . . , X` 6∈ σ.
Let P be a TMNF-program of schema σ. Let X1 be the
goal predicate. We define a σ-STA A = (Q, 2σ, F, δ, S)

as follows: We let Q = 2{X1,...,X`}, F = Q, and S =
{q ∈ Q | X1 ∈ q}. To define the transition function, we
first define a propositional Horn formula Ψ in the variables
σ ∪ {Xi, X

1
i , X

2
i | 1 ≤ i ≤ `} (we consider relation names

as propositional variables here) with the following clauses:

– If Xi(x) ← R(x) is a rule of P then Xi ← R is a
clause of Ψ.

– If Xi(x)← Xj(x) ∧Xk(x) is a rule of P then Xi ←
Xj ∧Xk is a clause of Ψ.

– If Xi(x) ← Xj(y) ∧ First-Child(x, y) is a rule of P
then Xi ← X1

j is a clause of Ψ.
If Xi(x) ← Xj(y) ∧ Second-Child(x, y) is a rule of
P then Xi ← X2

j is a clause of Ψ.

– If Xi(x) ← Xj(y) ∧ First-Child(y, x) is a rule of P
then X1

i ← Xj is a clause of Ψ.
If Xi(x) ← Xj(y) ∧ Second-Child(y, x) is a rule of
P then X2

i ← Xj is a clause of Ψ.

Now for all q1, q2 ∈ Q and τ ∈ 2σ we let Ψ(q1, q2, τ) be
the formula in the variables {X1, . . . , X`} obtained from Ψ
by replacing each variable X i

j , for i = 1, 2 and 1 ≤ j ≤ `,
by TRUE if Xj ∈ qi and by FALSE otherwise, and by re-
placing each R ∈ σ by TRUE if R ∈ τ and by FALSE oth-
erwise. Then we let δ(q1, q2, τ) be the set of all satisfying
assignments of Ψ(q1, q2, τ). Here a satisfying assignment
is identified with the set of variables it sets TRUE.

For q1 ∈ Q and τ ∈ 2σ we define a formula Ψ(q1, τ)
as Ψ(q1, q2, τ) above, just replacing all variables X2

j by
FALSE. Then we let δ(q1, τ) be the set of all satisfying as-
signments of Ψ(q1, τ). For τ ∈ 2σ we define δ(τ) similarly.

This completes the definition of the automaton A. It
is not hard to prove that A defines the same query as the
program P .

We now show how to evaluate STA-queries, that is,
queries defined by STAs, first on tree-instances and then on
compressed instances. The algorithms combine ideas from
[12] with the partial decompression methods that we also
use to evaluate XPath and monadic datalog queries.

Proposition 23. The evaluation problem for STA-queries
on binary tree instances can be solved in time O(s3 · n),
where s is the number of states of the input automaton and
n the number of vertices of the input instance.

Proof of Proposition 23: Let A = (Q, 2σ, F, δ, S) be an
STA and T a binary σ-tree instance.

For every t ∈ V T, let reach(t) be the set of all states q
such that there is a run ρ of A on T with ρ(t) = q. The
states in reach are called the reachable states at t. Clearly,
the mapping reach : V T → 2Q can be computed in time
O(s3 · n) in a bottom-up pass of the tree.

For every t ∈ V T, let succ(t) be the set of all states q
such that there is an accepting run ρ of A on T with ρ(t) =

17

q. The states in succ are called the successful states at t.
Observe that

succ(rootT) = reach(rootT) ∩ F,

and that for a siblings t1, t2 ∈ V T with parent t ∈ V T,

succ(t1) = {q1 ∈ reach(t1) |

∃q2 ∈ reach(t2), q ∈ succ(t) : q ∈ δ(q1, q2,Σ(t))}.

succ(t2) can be obtained analogously. Similarly, succ(t1)
can be obtained from succ(t) for an only-child t1. Using
this, it is easy to see that given reach, the mapping succ :
V T → 2Q can be computed in time O(s3 · n) in a top-down
pass of the tree.

The vertices in A(T) are precisely the t ∈ V T for which
succ(t) ⊆ S.

�

Remark 24. Note that storing the transition relation of an
automaton with s states requires space Ω(s2) andO(s3). So
the factor s3 in the running time of the previous algorithm
is not as bad as it looks. Indeed, a closer analysis shows that
the running time can be improved to O(m · n), where m is
the size of the encoding of the automaton.

In the remainder of this section, whenever we have an
automaton A run on a (compressed) instance I, the ac-
tual meaning is that A runs on the unfolded tree-instance
T(I), even if our results will be based on techniques that
usually do not require complete decompression to answer
queries. Thus, we continue to address the problem of eval-
uating queries on (compressed) trees, rather than studying
automata for directed acyclic graphs.

Theorem 25. The evaluation problem for STA-queries on
binary instances can be solved in time O(2s+3log s · n),
where s is the number of states of the input automaton and
n the number of vertices of the input instance.

Proof of Theorem 25: We proceed as on tree instances: In a
first bottom up pass we compute the sets of reachable states
at all vertices, and in a second, top-down pass we compute
the successful states. The problem is that a reachable state
q ∈ reach(v) may be successful on some path from v to
the root and not successful on some other path. If this hap-
pens, we have to create a copy v′ of vertex v and put q into
succ(v′), but not into succ(v) (or vice versa). In the worst
case, we have to create a copy of every vertex for every sub-
set of the state space, which explains why the running time
is exponential in s.

Let us make this precise. Let A = (Q, 2σ, F, δ, S) be a
σ-STA and I a binary σ-instance. Let T = T(I) be the tree

instance bisimilar to I. Recall that Π : V I → 2V
T(I)

maps
each vertex v ∈ V I to the set of vertices of T it corresponds
to.

For every t ∈ V T we define the reachable states reach(t)
and successful states succ(t) at t as in the proof of Proposi-
tion 23. Since reach(t) only depends on the subtree below
t, for all v ∈ V I, t, t′ ∈ Π(v) we have reach(t) = reach(t′).
Let reach(v) = reach(t). Observe that the mapping reach :
V I → 2Q can be computed in O(s3 ·n) in a bottom-up pass
of the instance I. (Compression does not matter here.)

However, there may be v ∈ V I, t, t′ ∈ Π(v) such that
succ(t) 6= succ(t′). For v ∈ V I we let

S(v) =
{

succ(t) | t ∈ Π(v)
}

.

In the top-down pass over the instance I we compute a new
instance J and mappings f : V J → V I and succ : V J → 2σ

such that:

(1) J is bisimilar to I,

(2) For all w ∈ V J we have w ≈ f(w) and thus Π(w) =
Π(f(w)).

(3) For all w ∈ V J and t ∈ Π(w) we have succ(t) =
succ(w).

(4) For every v ∈ V I and every X ∈ S(t) there exists
exactly one vertex w ∈ V J such that f(w) = v and
succ(w) = X .

We start by creating a vertex rootJ and let succ(rootJ) =
reach(rootI) ∩ F and f(rootJ) = rootI.

Now suppose thatw is a vertex ofw that we have already
created, and let v = f(w), andX = succ(w). Furthermore,
suppose that v has children v1 an v2 and that we have not
yet created any children of w. Let

X1 = {q1 ∈ reach(v1) | ∃q2 ∈ reach(v2), q ∈ X :

q ∈ δ(q1, q2,Σ(v))}.

Then for all t ∈ Π(w) with children t1 and t2 we haveX1 =
succ(t1). To see this, note that reach(t1) = reach(v1),
reach(t2) = reach(v2), succ(t) = X , and recall the cor-
responding claim in the proof of Proposition 23.

If there already is a vertex w1 ∈ V J such that f(w1) =
v1 and succ(w1) = X1, we make w1 the first child of w.
Otherwise, we create a new vertex w1, let f(w1) = v1 and
succ(w1) = X1, and make w1 the first child of w. The
second child of w is created analogously. If the vertex v =
f(w) only has one child, we proceed similarly.

With an appropriate dictionary data structure that stores,
for each vertex v ∈ V I , the set of all pairs w with f(w) = v
and allows, given X , to find the w with succ(w) = X (if
it exists) in time O(s), the children of a vertex of w can be
created in timeO(s3). Since J has at most 2s ·n vertices, the
overall running time to compute J and succ isO(s3 ·2s·n) =
O(2s+3log s · n).

The output of the algorithm is J together with the set of
all vertices v ∈ V J with succ(v) ⊆ S.

�

18

Remark 26. It is not hard to see the decision version of the
evaluation problem for STA-queries is in polynomial time,
because for a given σ-STA we can easily define a σ ∪ {X}-
tree automaton A′ such that for every σ-tree instance T and
every vertex t ∈ V T we have t ∈ A(T) if and only if A

′

accepts (T, {t}). The latter can be tested in time O(s3 · n),
because an automaton accepts a tree if and only if there is
an accepting reachable state at the root.

Corollary 27. The evaluation problem for MSO-queries on
binary instances parameterized by the size of the input for-
mula is fixed-parameter tractable.

Let ∃MSO be the set of MSO-formulas of the form
∃X1, . . . , Xkϕ(X1, . . . , Xk) where ϕ is first-order.

Theorem 28. The evaluation problem for ∃MSO-queries
on binary instances is NEXPTIME-complete. Evaluation
of MSO queries can be done in EXPSPACE.

Proof of Theorem 28 (Sketch): For the upper bounds re-
call that the tree-instance T(I) has size ≤ 2|V I|. To decide
whetherψ = ∃X̄ϕ(X̄) holds, we guess k setsAi and check
whether T(I) |= ϕ(Ā). This can be done in the straighfor-
ward way in time O(||T(I)||||ϕ||) = O(2||ϕ||·|V

I|).
In case of full MSO, we use the standard PSPACE algo-

rithm on T(I) [29], which, in total, yields EXPSPACE as
upper bound.

For the hardness, assume that M is a fixed nondetermin-
istic Turing machine with an NEXPTIME-complete accep-
tance problem (such a machine exists). We assume that M
has alphabet ∆ = {a1, . . . , al} and works on inputw ∈ ∆n

in time 2n
k

− 1, for some k ≥ 1. Let Q = {q1, . . . , qm}
be the state space of M . Then configurations are words
v ∈ ∆∗Q∆+ of length 2n

k

meaning that if vi ∈ Q then
M is in state q = vi and currently reading the ith cell of its
(input/work) tape (or equivalently,M reads vi+1).

From input w ∈ ∆n for M we construct a binary in-
stance I with |V I| = O(nk) and an ∃MSO-formula ϕ with
||ϕ|| = nO(k) such that M accepts w iff T(I) |= ϕ. Let I be
the structure from Figure 8 with paths of length 2 · nk + 1
and let T denote its tree version T(I). Note here that T has
exactly 22·nk

= 2n
k

· 2n
k

leaves.
Recall that elements of T are edge-paths. We call ev-

ery node t ∈ T, where t is a nk-length edge-path, a base.
There are 2n

k

bases and each subtree rooted at a base has
2n

k

leaves. Leaves and bases are each totally ordered by
the lexicographic ordering of the respective edge-paths (the
first digit is the most significant one). For convenience, we
denote both of them by ≺. For 0 ≤ i ≤ 2n

k

− 1, by t(i)
we denote the i-th base of V T. Analogously, let ts(i) be the
i-th leave of the subtree rooted at base s ∈ V T.

There is an FO-formula ψ(x, y) with ||ψ(x, y)|| =
O(n2k) such that T |= ψ(t, t′) iff t′ is the direct succes-

sor of t (w.r.t. ≺). For that, we simply guess two paths from
the root to t and t′ and check, if the edge-paths linking them
are direct successors. Analogously, we can define a formula
ψ(x1, y1, x2, y2) saying that x1, x2 are bases, y1 and y2 are
in Tx1 , Tx2 resp. and the path from x2 to y1 is the direct
successor of the path from x1 to y2 (w.r.t. ≺).

Recall that Ts, for a s ∈ V T, denotes the subtree of T
rooted at s. We encode a configuration v ∈ ∆∗Q∆+ (of
size 2n

k

) relative to base s as the (m + l)-tuple C̄ ⊆ V T
s

such that the following conditions hold:

(1) if t ∈ Cν for some i, then t is a leaf

(2) if vi ∈ Q then ts(i) ∈ Cν iff vi = qν , (ν = 1, . . . ,m)

(3) if vi ∈ ∆ then ts(i) ∈ Cν iff vi = aν−m, (ν = m +
1, . . . ,m+ l)

From now on we do not distinguish explicitly between
configurations and their encodings. It is straightforward
to define FO-formulas ϕstart(X̄, x) and ϕacc(X̄, x), which
hold, if x is a base and X̄ relative to x is the start config-
uration or a accepting configuration, respectively. The in-
tention behind these definition is to guess a tuple C̄ over the
leaves of T and to check, whether the configurations relative
to the bases in T form an accepting run. Here it is crucial to
observe that ψ(x1, y1, x2, y2) allows us to identify consec-
utive positions (y1, y2) in two different configurations (rel-
ative to x1, x2).

Next, we define ϕnext(X̄, x, y), which essentially says
that x and y are bases and direct ≺-successors, and that
X̄ relative to x and X̄ relative to y are configurations.
We let denote these configurations by Cx and Cy. Now
ϕnext(X̄, x, y) says that Cx “equals” Cy , or that we can
pass fromCx toCy in a single step. In particular, this means
that there are i ≤ nk, ν ≤ m such that tx(i) ∈ Xν , i.e. in
configuration Cx we have the situation that M is state qν
and reads letter aj (j such that tx(i + 1) ∈ Xm+j). Since,
using ψ, we are able to directly adress successors of tx(i)
and ty(i), it is easy to devise a formula ϕ′(X̄, x, y) saying
that the neighborhoods around tx(i) and ty(i) conform to
the transition relation of M .

The sought formula now looks as follows. Let

ϕ = ∃X̄
(

ϕstart(X̄, 0) ∧ ϕacc(X̄, 1)∧

∀bases x, y (ψ(x, y)→ ϕnext(X̄, x, y))
)

,

where we use 0 and 1 to denote the first and last base w.r.t.
≺, respectively. It is easy to see that ϕ behaves as it is sup-
posed to. More precisely, it states that there is a sequence
v1, . . . , v2nk of configurations such that v1, v2nk is a start-
ing, accepting configuration, respectively. Furthermore, it
states that for each i < 2n

k

either vi+1 is equal to vi or a
direct successor of vi (here w.r.t. the transition relation de-
fined by M). Together, this means that M on input w has
an accepting run.

19

The size of ϕ is bounded by nO(k), caused by the subfor-
mulas needed to identify ≺-successors of leaves and bases.
The remaining subformulas solely depend on the (fixed)
machine M .

�

If we convert a monadic datalog program into an STA
in the way described in Example 22 and then use Theo-
rem 25 to evaluate the query, the resulting algorithm is dou-
bly exponential in the size of the datalog program, which is
much worse than the direct algorithms we saw before. We
shall now introduce a restricted version of our STA, which
is somewhat closer to monadic datalog and admits more ef-
ficient query evaluation.

Definition 29. A weak selecting σ-tree automaton (σ-
WSTA) is a tuple A = (Q,Σ, F, δ, S,�), where
(Q,Σ, F, δ, S) is a σ-STA and� a partial order on Q s.t.

– F is downward closed w.r.t. �.

– S is upward closed w.r.t.�.

– For all (q̄, a) ∈ Σ∪(Q×Σ)∪(Q×Q×Σ) and r, r′ ∈
δ(q̄, a) there is an r′′ ∈ δ(q̄, a) such that r′′ � r, r′.

– δ is monotone with respect to � in the sense that for
all (q̄, a), (q̄′, a) ∈ (Q×Σ)∪ (Q×Q×Σ), if q̄ � q̄′

(componentwise) then for every r′ ∈ δ(q̄′, a) there is
an r ∈ δ(q̄, a) such that r � r′.

Example 30. The automaton constructed from a monadic
datalog program in Example 22 with set-inclusion as a par-
tial order on the state space 2{X1,...,Xn} is a WSTA. To
see this, just note that the set of satisfying assignments of
a propositional Horn formula is closed under intersection
and monotone with respect to the Boolean constants in the
formula.

Proposition 31. For every STA there is a WSTA that defines
the same query.

Proof of Proposition 31: This follows from the fact that ev-
ery MSO-query is definable by a monadic datalog program
[14], Theorem 20, and the previous example.

�

Note that if A = (Q,Σ, F, δ, S,�) is a σ-WSTA and T
a binary σ-tree instance, then � induces a partial order on
the runs of A on T, which we also denote by �, and which
is defined by ρ � ρ′ if ρ(t) � ρ′(t) for all t ∈ V T.

Lemma 32. Let A = (Q,Σ, F, δ, S,�) be a σ-WSTA. Then
for every binary σ-tree instance T there is a unique minimal
run ρmin of A on T with respect to the order � on the runs.
Moreover, if A accepts T then ρmin is an accepting run and

A(T) = {t ∈ V T | ρmin(t) ∈ S}.

Proof: In a straightforward bottom-up fashion we can con-
struct for any two runs ρ, ρ′ of A on T a run ρ′′ such that

ρ′′ � ρ, ρ′. Since there are only finitely many runs, this
implies the existence of a unique minimal run.

If there is some accepting run ρ, then all runs ρ′ � ρ
are also accepting, because F is downward closed. Thus in
particular, ρmin is accepting. A(T) = {t ∈ V T | ρmin(t) ∈
S} follows from the fact that S is upward closed w.r.t. �,
which implies that for runs ρ � ρ′, every vertex selected by
ρ is also selected by ρ′.

�

Theorem 33. The evaluation problem for WSTA-queries on
binary instances can be solved in time O(s3 · n), where s
is the number of states of the input automaton and n the
number of vertices of the input instance.

Proof of Theorem 33 (Sketch): We essentially proceed
as in the proof of Theorem 25 using Lemma 32 to re-
strict attention to success states instead of success sets. Let
A = (Q,Σ, F, δ, S,�) be a σ-WSTA and I a binary σ-
instance. Let T = T(I) be the tree instance bisimilar to
I. For t ∈ V T define reach(t) and succ(t) as before. Fur-
thermore, let succ ′(t) be the minimal state of succ(t) (w.r.t.
�) and let S ′(v) = {succ′(t) | t ∈ Π(v)}. We proceed
as in the case of general STAs, but compute minimal states
instead of sets of states. By the previous lemma this is suf-
ficient to determine the sought result.

Again we start with a bottom-up pass computing
reach(t) for all t ∈ V T. Here note that reach(t) =
reach(t′) for all t, t′ ∈ Π(v) for an arbitrary v ∈ V I. Then
we go top-down and gradually compute a new instance J
and mappings f : V J → V I and succ′ : V J → Q that sat-
isfy the conditions (1) to (4) with succ and S replaced by
succ′ and S ′, respectively. Note that, since F is downward
closed, ρ(t) := succ ′(v) for t ∈ Π(v) is the sought minimal
accepting run ρ of A on T.

We start by creating a vertex rootJ and let succ′(rootJ) =
reach(rootI) ∩ F and f(rootJ) = rootI.

If w is a vertex of V J that has already been created,
let v = f(w) and q = succ ′(w). Suppose that v has
children v1, v2 and let X1 = {q1 ∈ reach(v1) | ∃q2 ∈
reach(v2) s.t. q ∈ δ(q1, q2,Σ(v)}. Let q1 be the minimum
of X1.

Now we check if there is a w1 ∈ V
J with f(w1) = v1

and succ′(w1) = q1. If so, we make w1 the first child of w.
Otherwise, we create a new w1 in J and define f(w1) = v1,
succ′(w1) = q1 and make this w1 the first child of w.

Now we see that for all t ∈ Π(w) with children t1, t2 we
have q1 = succ′(t1). This shows that the procedure yields
the intended result. Then we proceed analogously for the
second child v2.

But in contrast to the general case, now we create at most
s new vertices for one vertex in I, hence we have at most s·n
vertices in V J.

An ad-hoc implementation yields an s4 factor. This can

20

be improved as follows: at each node v ∈ V I with chil-
dren v1, v2 we compute the sets pre1 (v, q) = {q1 | ∃q2 ∈
reach(v2), q ∈ δ(q1, q2,Σ(v))}. Note that this set coin-
cides with X1, computed for q = succ ′(w) as defined
above.

Analogously, we compute the sets pre2 (v, q). Note that,
using suitable data structures, this can be done in a single
loop over all tuples (q1, q2,Σ(v), q) ∈ δ, hence requires
O(s3) steps for each v ∈ V I. Then we simply look up
these tables to determine the values succ ′(t) (we find the
minimum in O(s) steps).

Together, this gives the O(s3 · n) time bound.
�

6.2. Unranked tree automata. Even though we can avoid
unranked instances entirely if we transform them to binary
instances as described in Section 5, we think it is still worth-
while to briefly discuss STAs on unranked instances. We
have mentioned earlier that we run a tree automaton on an
unranked tree by running it on the corresponding binary tree
induced by the First-Child and Next-Sibling relation. Note
that in this binary tree, the last siblings are precisely those
that only have one (first) child.

To distinguish them clearly from the “binary” automata
considered in the previous section, we call the automata
considered here unranked tree automata. Let us emphasise,
however, that the automata themselves are the same, they
only run in a different way.

Once we have defined an appropriate notion of run
and acceptance for unranked tree automata, we can de-
fine unranked STAs and unranked WSTAs. Then the ba-
sic results stated for binary automata in the previous sec-
tion have analogous versions for unranked automata. In
particular, every MSO-query on unranked trees (viewed
as σ∪{Root, Leaf, Last-Sibling,First-Child,Next-Sibling}-
structures) is definable by an STA and vice versa. More-
over, monadic datalog programs over unranked trees can be
translated into WSTAs whose state space is the set of all
IDB predicates.

We only state the unranked version of the main result.
The bounds on the running time are weaker, which is mainly
due to the compact representation of multiple edges in com-
pressed instances (cf. Section 2.2).

Theorem 34. The evaluation problem for

(1) STA-queries can be solved in time O(23s + 2s ·m).

(2) WSTA-queries can be solved in time O(23s + s ·m).

Here s is the number of states of the input automaton and
m the size of the input instance.

Proof of Theorem 34 (Sketch): Basically, we proceed as
in the binary case. When computing the reachable and suc-
cessful states, it is convenient to associate them with edges
of the instance instead of vertices. For example, reach(e)

for an edge e = (v, w) represents the set reach(Π(w)). The
reason we have to do this is that vertices may play differ-
ent roles as children of different parents — they may be
the first child of some, but not for all parents. If we trans-
fer the algorithms in a straightforward way, we obtain run-
ning times of O(2s+3log s · |E|) for STAs and O(s3 · |E|)
for WSTAs, where |E| is the number of edges of the input
instance. However, due to the compact representation of
multiple edges, the size of the input instance may be much
smaller than |E|.

Let A be an STA and I an instance. Consider a node u of
the input instance I which has outgoing edges e1, . . . , en.
Suppose ep, . . . , eq, for some 1 ≤ p < q < n, have the
same endpoint v, and ep−1 (if p > 1) and eq+1 have an
endpoint distinct from v. Then in the adjacency list of u,
edges ep, . . . , eq are represented as a single edge e of mul-
tiplicity r = (q − p + 1). Let w be the first child of v and
f the edge from v to w. Let x be the endpoint of eq+1,
i.e., the next sibling of v. Suppose that during the computa-
tion of the reachable states we have already computedR =
reach(f) and R′ = reach(eq+1). To compute reach(e),
we not only have to simulate one step of the computation
of the automaton A, but actually a sequence of r steps to
compute R1 = reach(eq), R2 = reach(eq−1), . . . , Rr =
reach(ep) = reach(e). The crucial observation is that since
there are only 2s distinct subsets of the state space, there are
i < j ≤ 2s+1 such that Ri = Rj . Of course this implies
that for all k ≥ i we have Rk = R` for

` =
(

(k − i) mod (j − i)
)

+ i.

Thus once we have found i and j, we can stop the simulation
and compute Rr by simple arithmetic.

Instead of running this simulation every time it is needed,
we can pre-compute a table that contains, for all subsets R
and R′, the values i and j and the sets R1, . . . , Rj . Such a
table can be computed in time 23s. Of course the table then
simplifies the computation of the mappings reach and succ,
because essentially we are dealing with a deterministic au-
tomaton now.

�

Acknowledgments

We thank an anonymous reviewer for pointing out to us that
an unpublished part of Frank Neven’s PhD thesis [23], pp.
128–130, defines the notion of nondeterministic query au-
tomata which precisely equals ours of STAs on (uncom-
pressed) trees. Theorem 20 and Corollary 21 are proven
there as well.

The third author’s visit to LFCS, University of Edin-
burgh, was sponsored by Erwin Schrödinger Grant J2169
of the Austrian Research Fund (FWF).

21

References

[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web.
Morgan Kaufmann Publishers, 2000.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[3] A. Brüggemann-Klein, M. Murata, and D. Wood. “Reg-
ular Tree and Regular Hedge Languages over Non-ranked
Alphabets: Version 1, April 3, 2001”. Technical Report
HKUST-TCSC-2001-05, Hong Kong University of Science
and Technology, Hong Kong SAR, China, 2001.

[4] A. Brüggemann-Klein and D. Wood. “Caterpillars: A Con-
text Specification Technique”. Markup Languages, 2(1):81–
106, 2000.

[5] R. E. Bryant. “Graph-Based Algorithms for Boolean Func-
tion Manipulation”. IEEE Transactions on Computers, C-
35(8):677–691, Aug. 1986.

[6] P. Buneman, M. Grohe, and C. Koch. “Path Queries on
Compressed XML”, 2003. Submitted for publication.

[7] J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang.
“Symbolic Model Checking: 10

20 States and Beyond”. In
Proceedings of the Annual IEEE Symposium on Logic in
Computer Science (LICS’90), 1990.

[8] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking.
MIT Press, 2000.

[9] J. Doner. “Tree Acceptors and some of their Applica-
tions”. Journal of Computer and System Sciences, 4:406–
451, 1970.

[10] R. Downey and M. Fellows. Parameterized Complexity.
Springer-Verlag, 1999.

[11] H.-D. Ebbinghaus and J. Flum. Finite Model Theory.
Springer-Verlag, 1999. Second edition.

[12] J. Flum, M. Frick, and M. Grohe. “Query Evaluation
via Tree-Decompositions”. In J. Van den Bussche and
V. Vianu, editors, Proc. of the 8th International Conference
on Database Theory (ICDT’01), volume 1973 of Lecture
Notes in Computer Science, pages 22–38, London, UK, Jan.
2001. Springer.

[13] M. Frick and M. Grohe. “The Complexity of First-order and
Monadic Second-order Logic Revisited”. In Proceedings of
the 17th IEEE Symposium on Logic in Computer Science,
pages 215–224, 2002.

[14] G. Gottlob and C. Koch. “Monadic Datalog and the Ex-
pressive Power of Web Information Extraction Languages”,
Nov. 2002. Extended version of PODS’02 paper, submitted.
Available as CoRR report arXiv:cs.DB/0211020.

[15] G. Gottlob and C. Koch. “Monadic Queries over Tree-
Structured Data”. In Proceedings of the 17th Annual IEEE
Symposium on Logic in Computer Science (LICS 2002),
pages 189–202, Copenhagen, Denmark, July 2002.

[16] G. Gottlob, C. Koch, and R. Pichler. “Efficient Algo-
rithms for Processing XPath Queries”. In Proceedings of
the 28th International Conference on Very Large Data Bases
(VLDB’02), Hong Kong, China, 2002.

[17] G. Gottlob, C. Koch, and R. Pichler. “The Complexity
of XPath Query Processing”. In Proceedings of the 22nd
ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems (PODS), San Diego, California, USA,
June 2003. To appear.

[18] T. J. Green, G. Miklau, M. Onizuka, and D. Suciu. “Pro-
cessing XML Streams with Deterministic Automata”. In
Proc. of the 9th International Conference on Database The-
ory (ICDT’03), 2003.

[19] M. Grohe. “Parameterized Complexity for the Database
Theorist”. SIGMOD Record, 31(4), 2002.

[20] H. Hosoya and B. C. Pierce. “Regular Expression Pattern
Matching for XML”. In Proceedings of 28th Symposium
on Principles of Programming Languages (POPL’01), pages
67–80. ACM Press, 2001.

[21] T. Milo, D. Suciu, and V. Vianu. “Typechecking for
XML Transformers”. In Proceedings of the ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS’00), pages 11–22, 2000.

[22] M. Minoux. “LTUR: A Simplified Linear-Time Unit Res-
olution Algorithm for Horn Formulae and Computer Im-
plementation”. Information Processing Letters, 29(1):1–12,
1988.

[23] F. Neven. Design and Analysis of Query Languages for
Structured Documents – A Formal and Logical Approach.
PhD thesis, Limburgs Universitair Centrum, 1999.

[24] F. Neven. “Automata Theory for XML Researchers”. SIG-
MOD Record, 31(3), Sept. 2002.

[25] F. Neven and T. Schwentick. “Expressive and Efficient Pat-
tern Languages for Tree-Structured Data”. In Proceedings of
the ACM SIGACT-SIGMOD-SIGART Symposium on Princi-
ples of Database Systems (PODS’00), pages 145–156, Dal-
las, Texas, USA, 2000. ACM Press.

[26] F. Neven and T. Schwentick. “Query Automata on Finite
Trees”. Theoretical Computer Science, 275:633–674, 2002.

[27] L. Stockmeyer and A. Meyer. “Word Problems Requiring
Exponential Time”. In Proceedings of the 5th ACM Sympo-
sium on Theory of Computing, pages 1–9, 1973.

[28] J. Thatcher and J. Wright. “Generalized Finite Au-
tomata Theory with an Application to a Decision Problem
of Second-order Logic”. Mathematical Systems Theory,
2(1):57–81, 1968.

[29] M. Y. Vardi. “The Complexity of Relational Query Lan-
guages”. In Proc. 14th Annual ACM Symposium on Theory
of Computing (STOC’82), pages 137–146, San Francisco,
CA USA, May 1982.

[30] World Wide Web Consortium. XML Path Language
(XPath) Recommendation. http://www.w3c.org/TR/xpath/,
Nov. 1999.

22

