4 research outputs found

    Queries with Arithmetic on Incomplete Databases

    Get PDF
    International audienceThe standard notion of query answering over incomplete database is that of certain answers, guaranteeing correctness regardless of how incomplete data is interpreted. In majority of real-life databases,relations have numerical columns and queries use arithmetic and comparisons. Even though the notion of certain answers still applies,we explain that it becomes much more problematic in situations when missing data occurs in numerical columns. We propose a new general framework that allows us to assign a measure of certainty to query answers. We test it in the agnostic scenario where we do not have prior information about values of numerical attributes, similarly to the predominant approach in handling incomplete data which assumes that each null can be interpreted as an arbitrary value of the domain. The key technical challenge is the lack of a uniform distribution over the entire domain of numerical attributes, such as real numbers. We overcome this by associating the measure of certainty with the asymptotic behaviorof volumes of some subsets of the Euclidean space. We show that this measure is well-defined, and describe approaches to computing and approximating it. While it can be computationally hard, or result in an irrational number, even for simple constraints, we produce polynomial-time randomized approximation schemes with multiplicative guarantees for conjunctive queries, and with additive guarantees for arbitrary first-order queries. We also describe a set of experimental results to confirm the feasibility of this approach

    Queries with Arithmetic on Incomplete Databases

    Get PDF
    The standard notion of query answering over incomplete database is that of certain answers, guaranteeing correctness regardless of how incomplete data is interpreted. In majority of real-life databases, relations have numerical columns and queries use arithmetic and comparisons. Even though the notion of certain answers still applies, we explain that it becomes much more problematic in situations when missing data occurs in numerical columns. We propose a new general framework that allows us to assign a measure of certainty to query answers. We test it in the agnostic scenario where we do not have prior information about values of numerical attributes, similarly to the predominant approach in handling incomplete data which assumes that each null can be interpreted as an arbitrary value of the domain. The key technical challenge is the lack of a uniform distribution over the entire domain of numerical attributes, such as real numbers. We overcome this by associating the measure of certainty with the asymptotic behavior of volumes of some subsets of the Euclidean space. We show that this measure is well-defined, and describe approaches to computing and approximating it. While it can be computationally hard, or result in an irrational number, even for simple constraints, we produce polynomial-time randomized approximation schemes with multiplicative guarantees for conjunctive queries, and with additive guarantees for arbitrary first-order queries. We also describe a set of experimental results to confirm the feasibility of this approach

    Tuple-Independent Representations of Infinite Probabilistic Databases

    Full text link
    Probabilistic databases (PDBs) are probability spaces over database instances. They provide a framework for handling uncertainty in databases, as occurs due to data integration, noisy data, data from unreliable sources or randomized processes. Most of the existing theory literature investigated finite, tuple-independent PDBs (TI-PDBs) where the occurrences of tuples are independent events. Only recently, Grohe and Lindner (PODS '19) introduced independence assumptions for PDBs beyond the finite domain assumption. In the finite, a major argument for discussing the theoretical properties of TI-PDBs is that they can be used to represent any finite PDB via views. This is no longer the case once the number of tuples is countably infinite. In this paper, we systematically study the representability of infinite PDBs in terms of TI-PDBs and the related block-independent disjoint PDBs. The central question is which infinite PDBs are representable as first-order views over tuple-independent PDBs. We give a necessary condition for the representability of PDBs and provide a sufficient criterion for representability in terms of the probability distribution of a PDB. With various examples, we explore the limits of our criteria. We show that conditioning on first order properties yields no additional power in terms of expressivity. Finally, we discuss the relation between purely logical and arithmetic reasons for (non-)representability
    corecore