70 research outputs found

    EMBEDDIA at SemEval-2022 Task 8: Investigating Sentence, Image, and Knowledge Graph Representations for Multilingual News Article Similarity

    Get PDF
    In this paper, we present the participation of the EMBEDDIA team in the SemEval-2022 Task 8 (Multilingual News Article Similarity). We cover several techniques and propose different methods for finding the multilingual news article similarity by exploring the dataset in its entirety. We take advantage of the textual content of the articles, the provided metadata (e.g., titles, keywords, topics), the translated articles, the images (those that were available), and knowledge graph-based representations for entities and relations present in the articles. We, then, compute the semantic similarity between the different features and predict through regression the similarity scores. Our findings show that, while our proposed methods obtained promising results, exploiting the semantic textual similarity with sentence representations is unbeatable. Finally, in the official SemEval-2022 Task 8, we ranked fifth in the overall team ranking cross-lingual results, and second in the English-only results.Peer reviewe

    A closer look at sum-based embeddings for knowledge graphs containing procedural knowledge

    Get PDF
    While knowledge graphs and their embedding into low dimensional vectors are established fields of research, they mostly cover factual knowledge. However, to improve downstream models, e. g. for predictive quality in real-world industrial use cases, embeddings of procedural knowledge, available in the form of rules, could be utilized. As such, we investigate which properties of embedding algorithms could prove beneficial in this scenario and evaluate which established embedding methodologies are suited to form the basis of sum-based embeddings of different representations of procedural knowledge

    CausE: Towards Causal Knowledge Graph Embedding

    Full text link
    Knowledge graph embedding (KGE) focuses on representing the entities and relations of a knowledge graph (KG) into the continuous vector spaces, which can be employed to predict the missing triples to achieve knowledge graph completion (KGC). However, KGE models often only briefly learn structural correlations of triple data and embeddings would be misled by the trivial patterns and noisy links in real-world KGs. To address this issue, we build the new paradigm of KGE in the context of causality and embedding disentanglement. We further propose a Causality-enhanced knowledge graph Embedding (CausE) framework. CausE employs causal intervention to estimate the causal effect of the confounder embeddings and design new training objectives to make stable predictions. Experimental results demonstrate that CausE could outperform the baseline models and achieve state-of-the-art KGC performance. We release our code in https://github.com/zjukg/CausE.Comment: Accepted by CCKS 2023 as a research pape

    Efficient Federated Learning on Knowledge Graphs via Privacy-preserving Relation Embedding Aggregation

    Full text link
    Federated Learning (FL) on knowledge graphs (KGs) has yet to be as well studied as other domains, such as computer vision and natural language processing. A recent study FedE first proposes an FL framework that shares entity embeddings of KGs across all clients. However, compared with model sharing in vanilla FL, entity embedding sharing from FedE would incur severe privacy leakage. Specifically, the known entity embedding can be used to infer whether a specific relation between two entities exists in a private client. In this paper, we first develop a novel attack that aims to recover the original data based on embedding information, which is further used to evaluate the vulnerabilities of FedE. Furthermore, we propose a Federated learning paradigm with privacy-preserving Relation embedding aggregation (FedR) to tackle the privacy issue in FedE. Compared to entity embedding sharing, relation embedding sharing policy can significantly reduce the communication cost due to its smaller size of queries. We conduct extensive experiments to evaluate FedR with five different embedding learning models and three benchmark KG datasets. Compared to FedE, FedR achieves similar utility and significant (nearly 2X) improvements in both privacy and efficiency on link prediction task.Comment: Accepted to ACL 2022 Workshop on Federated Learning for Natural Language Processin

    Simple and Effective Relation-based Embedding Propagation for Knowledge Representation Learning

    Full text link
    Relational graph neural networks have garnered particular attention to encode graph context in knowledge graphs (KGs). Although they achieved competitive performance on small KGs, how to efficiently and effectively utilize graph context for large KGs remains an open problem. To this end, we propose the Relation-based Embedding Propagation (REP) method. It is a post-processing technique to adapt pre-trained KG embeddings with graph context. As relations in KGs are directional, we model the incoming head context and the outgoing tail context separately. Accordingly, we design relational context functions with no external parameters. Besides, we use averaging to aggregate context information, making REP more computation-efficient. We theoretically prove that such designs can avoid information distortion during propagation. Extensive experiments also demonstrate that REP has significant scalability while improving or maintaining prediction quality. Notably, it averagely brings about 10% relative improvement to triplet-based embedding methods on OGBL-WikiKG2 and takes 5%-83% time to achieve comparable results as the state-of-the-art GC-OTE.Comment: Accepted by IJCAI 202

    A Review in Knowledge Extraction from Knowledge Bases

    Get PDF
    Generative language models achieve the state of the art in many tasks within natural language processing (NLP). Although these models correctly capture syntactic information, they fail to interpret knowledge (semantics). Moreover, the lack of interpretability of these models promotes the use of other technologies as a replacement or complement to generative language models. This is the case with research focused on incorporating knowledge by resorting to knowledge bases mainly in the form of graphs. The generation of large knowledge graphs is carried out with unsupervised or semi-supervised techniques, which promotes the validation of this knowledge with the same type of techniques due to the size of the generated databases. In this review, we will explain the different techniques used to test and infer knowledge from graph structures with machine learning algorithms. The motivation of validating and inferring knowledge is to use correct knowledge in subsequent tasks with improved embeddings
    corecore