3 research outputs found

    Quasi-polynomial Hitting-set for Set-depth-Delta Formulas

    Full text link
    We call a depth-4 formula C set-depth-4 if there exists a (unknown) partition (X_1,...,X_d) of the variable indices [n] that the top product layer respects, i.e. C(x) = \sum_{i=1}^k \prod_{j=1}^{d} f_{i,j}(x_{X_j}), where f_{i,j} is a sparse polynomial in F[x_{X_j}]. Extending this definition to any depth - we call a depth-Delta formula C (consisting of alternating layers of Sigma and Pi gates, with a Sigma-gate on top) a set-depth-Delta formula if every Pi-layer in C respects a (unknown) partition on the variables; if Delta is even then the product gates of the bottom-most Pi-layer are allowed to compute arbitrary monomials. In this work, we give a hitting-set generator for set-depth-Delta formulas (over any field) with running time polynomial in exp(({Delta}^2 log s)^{Delta - 1}), where s is the size bound on the input set-depth-Delta formula. In other words, we give a quasi-polynomial time blackbox polynomial identity test for such constant-depth formulas. Previously, the very special case of Delta=3 (also known as set-multilinear depth-3 circuits) had no known sub-exponential time hitting-set generator. This was declared as an open problem by Shpilka & Yehudayoff (FnT-TCS 2010); the model being first studied by Nisan & Wigderson (FOCS 1995). Our work settles this question, not only for depth-3 but, up to depth epsilon.log s / loglog s, for a fixed constant epsilon < 1. The technique is to investigate depth-Delta formulas via depth-(Delta-1) formulas over a Hadamard algebra, after applying a `shift' on the variables. We propose a new algebraic conjecture about the low-support rank-concentration in the latter formulas, and manage to prove it in the case of set-depth-Delta formulas.Comment: 22 page

    Independence in Algebraic Complexity Theory

    Get PDF
    This thesis examines the concepts of linear and algebraic independence in algebraic complexity theory. Arithmetic circuits, computing multivariate polynomials over a field, form the framework of our complexity considerations. We are concerned with polynomial identity testing (PIT), the problem of deciding whether a given arithmetic circuit computes the zero polynomial. There are efficient randomized algorithms known for this problem, but as yet deterministic polynomial-time algorithms could be found only for restricted circuit classes. We are especially interested in blackbox algorithms, which do not inspect the given circuit, but solely evaluate it at some points. Known approaches to the PIT problem are based on the notions of linear independence and rank of vector subspaces of the polynomial ring. We generalize those methods to algebraic independence and transcendence degree of subalgebras of the polynomial ring. Thereby, we obtain efficient blackbox PIT algorithms for new circuit classes. The Jacobian criterion constitutes an efficient characterization for algebraic independence of polynomials. However, this criterion is valid only in characteristic zero. We deduce a novel Jacobian-like criterion for algebraic independence of polynomials over finite fields. We apply it to obtain another blackbox PIT algorithm and to improve the complexity of testing the algebraic independence of arithmetic circuits over finite fields.Die vorliegende Arbeit untersucht die Konzepte der linearen und algebraischen Unabhängigkeit innerhalb der algebraischen Komplexitätstheorie. Arithmetische Schaltkreise, die multivariate Polynome über einem Körper berechnen, bilden die Grundlage unserer Komplexitätsbetrachtungen. Wir befassen uns mit dem polynomial identity testing (PIT) Problem, bei dem entschieden werden soll ob ein gegebener Schaltkreis das Nullpolynom berechnet. Für dieses Problem sind effiziente randomisierte Algorithmen bekannt, aber deterministische Polynomialzeitalgorithmen konnten bisher nur für eingeschränkte Klassen von Schaltkreisen angegeben werden. Besonders von Interesse sind Blackbox-Algorithmen, welche den gegebenen Schaltkreis nicht inspizieren, sondern lediglich an Punkten auswerten. Bekannte Ansätze für das PIT Problem basieren auf den Begriffen der linearen Unabhängigkeit und des Rangs von Untervektorräumen des Polynomrings. Wir übertragen diese Methoden auf algebraische Unabhängigkeit und den Transzendenzgrad von Unteralgebren des Polynomrings. Dadurch erhalten wir effiziente Blackbox-PIT-Algorithmen für neue Klassen von Schaltkreisen. Eine effiziente Charakterisierung der algebraischen Unabhängigkeit von Polynomen ist durch das Jacobi-Kriterium gegeben. Dieses Kriterium ist jedoch nur in Charakteristik Null gültig. Wir leiten ein neues Jacobi-artiges Kriterium für die algebraische Unabhängigkeit von Polynomen über endlichen Körpern her. Dieses liefert einen weiteren Blackbox-PIT-Algorithmus und verbessert die Komplexität des Problems arithmetische Schaltkreise über endlichen Körpern auf algebraische Unabhängigkeit zu testen
    corecore