1,445 research outputs found

    Many-server queues with customer abandonment: numerical analysis of their diffusion models

    Full text link
    We use multidimensional diffusion processes to approximate the dynamics of a queue served by many parallel servers. The queue is served in the first-in-first-out (FIFO) order and the customers waiting in queue may abandon the system without service. Two diffusion models are proposed in this paper. They differ in how the patience time distribution is built into them. The first diffusion model uses the patience time density at zero and the second one uses the entire patience time distribution. To analyze these diffusion models, we develop a numerical algorithm for computing the stationary distribution of such a diffusion process. A crucial part of the algorithm is to choose an appropriate reference density. Using a conjecture on the tail behavior of a limit queue length process, we propose a systematic approach to constructing a reference density. With the proposed reference density, the algorithm is shown to converge quickly in numerical experiments. These experiments also show that the diffusion models are good approximations for many-server queues, sometimes for queues with as few as twenty servers

    Threshold queueing describes the fundamental diagram of uninterrupted traffic

    Get PDF
    Queueing due to congestion is an important aspect of road traffic. This paper provides a brief overview of queueing models for traffic and a novel threshold queue that captures the main aspects of the empirical shape of the fundamental diagram. Our numerical results characterises the sources of variation that influence the shape of the fundamental diagram

    Optimization of polling systems with Bernoulli schedules

    Get PDF
    Optimization;Polling Systems;Queueing Theory;operations research

    Loss systems in a random environment

    Full text link
    We consider a single server system with infinite waiting room in a random environment. The service system and the environment interact in both directions. Whenever the environment enters a prespecified subset of its state space the service process is completely blocked: Service is interrupted and newly arriving customers are lost. We prove an if-and-only-if-condition for a product form steady state distribution of the joint queueing-environment process. A consequence is a strong insensitivity property for such systems. We discuss several applications, e.g. from inventory theory and reliability theory, and show that our result extends and generalizes several theorems found in the literature, e.g. of queueing-inventory processes. We investigate further classical loss systems, where due to finite waiting room loss of customers occurs. In connection with loss of customers due to blocking by the environment and service interruptions new phenomena arise. We further investigate the embedded Markov chains at departure epochs and show that the behaviour of the embedded Markov chain is often considerably different from that of the continuous time Markov process. This is different from the behaviour of the standard M/G/1, where the steady state of the embedded Markov chain and the continuous time process coincide. For exponential queueing systems we show that there is a product form equilibrium of the embedded Markov chain under rather general conditions. For systems with non-exponential service times more restrictive constraints are needed, which we prove by a counter example where the environment represents an inventory attached to an M/D/1 queue. Such integrated queueing-inventory systems are dealt with in the literature previously, and are revisited here in detail

    Analysis of Markov-modulated infinite-server queues in the central-limit regime

    Get PDF
    This paper focuses on an infinite-server queue modulated by an independently evolving finite-state Markovian background process, with transition rate matrix Q(qij)i,j=1dQ\equiv(q_{ij})_{i,j=1}^d. Both arrival rates and service rates are depending on the state of the background process. The main contribution concerns the derivation of central limit theorems for the number of customers in the system at time t0t\ge 0, in the asymptotic regime in which the arrival rates λi\lambda_i are scaled by a factor NN, and the transition rates qijq_{ij} by a factor NαN^\alpha, with αR+\alpha \in \mathbb R^+. The specific value of α\alpha has a crucial impact on the result: (i) for α>1\alpha>1 the system essentially behaves as an M/M/\infty queue, and in the central limit theorem the centered process has to be normalized by N\sqrt{N}; (ii) for α<1\alpha<1, the centered process has to be normalized by N1α/2N^{{1-}\alpha/2}, with the deviation matrix appearing in the expression for the variance

    Global attraction of ODE-based mean field models with hyperexponential job sizes

    Full text link
    Mean field modeling is a popular approach to assess the performance of large scale computer systems. The evolution of many mean field models is characterized by a set of ordinary differential equations that have a unique fixed point. In order to prove that this unique fixed point corresponds to the limit of the stationary measures of the finite systems, the unique fixed point must be a global attractor. While global attraction was established for various systems in case of exponential job sizes, it is often unclear whether these proof techniques can be generalized to non-exponential job sizes. In this paper we show how simple monotonicity arguments can be used to prove global attraction for a broad class of ordinary differential equations that capture the evolution of mean field models with hyperexponential job sizes. This class includes both existing as well as previously unstudied load balancing schemes and can be used for systems with either finite or infinite buffers. The main novelty of the approach exists in using a Coxian representation for the hyperexponential job sizes and a partial order that is stronger than the componentwise partial order used in the exponential case.Comment: This paper was accepted at ACM Sigmetrics 201
    corecore