10,324 research outputs found

    Quasi-Random Influences of Boolean Functions

    Full text link
    We examine a hierarchy of equivalence classes of quasi-random properties of Boolean Functions. In particular, we prove an equivalence between a number of properties including balanced influences, spectral discrepancy, local strong regularity, homomorphism enumerations of colored or weighted graphs and hypergraphs associated with Boolean functions as well as the kkth-order strict avalanche criterion amongst others. We further construct families of quasi-random boolean functions which exhibit the properties of our equivalence theorem and separate the levels of our hierarchy.Comment: 27 pages, 6 figure

    Join-irreducible Boolean functions

    Full text link
    This paper is a contribution to the study of a quasi-order on the set Ω\Omega of Boolean functions, the \emph{simple minor} quasi-order. We look at the join-irreducible members of the resulting poset Ω~\tilde{\Omega}. Using a two-way correspondence between Boolean functions and hypergraphs, join-irreducibility translates into a combinatorial property of hypergraphs. We observe that among Steiner systems, those which yield join-irreducible members of Ω~\tilde{\Omega} are the -2-monomorphic Steiner systems. We also describe the graphs which correspond to join-irreducible members of Ω~\tilde{\Omega}.Comment: The current manuscript constitutes an extension to the paper "Irreducible Boolean Functions" (arXiv:0801.2939v1

    Cell fate reprogramming by control of intracellular network dynamics

    Full text link
    Identifying control strategies for biological networks is paramount for practical applications that involve reprogramming a cell's fate, such as disease therapeutics and stem cell reprogramming. Here we develop a novel network control framework that integrates the structural and functional information available for intracellular networks to predict control targets. Formulated in a logical dynamic scheme, our approach drives any initial state to the target state with 100% effectiveness and needs to be applied only transiently for the network to reach and stay in the desired state. We illustrate our method's potential to find intervention targets for cancer treatment and cell differentiation by applying it to a leukemia signaling network and to the network controlling the differentiation of helper T cells. We find that the predicted control targets are effective in a broad dynamic framework. Moreover, several of the predicted interventions are supported by experiments.Comment: 61 pages (main text, 15 pages; supporting information, 46 pages) and 12 figures (main text, 6 figures; supporting information, 6 figures). In revie
    corecore