1,403 research outputs found

    Selective Deep Convolutional Features for Image Retrieval

    Full text link
    Convolutional Neural Network (CNN) is a very powerful approach to extract discriminative local descriptors for effective image search. Recent work adopts fine-tuned strategies to further improve the discriminative power of the descriptors. Taking a different approach, in this paper, we propose a novel framework to achieve competitive retrieval performance. Firstly, we propose various masking schemes, namely SIFT-mask, SUM-mask, and MAX-mask, to select a representative subset of local convolutional features and remove a large number of redundant features. We demonstrate that this can effectively address the burstiness issue and improve retrieval accuracy. Secondly, we propose to employ recent embedding and aggregating methods to further enhance feature discriminability. Extensive experiments demonstrate that our proposed framework achieves state-of-the-art retrieval accuracy.Comment: Accepted to ACM MM 201

    A Deep Four-Stream Siamese Convolutional Neural Network with Joint Verification and Identification Loss for Person Re-detection

    Full text link
    State-of-the-art person re-identification systems that employ a triplet based deep network suffer from a poor generalization capability. In this paper, we propose a four stream Siamese deep convolutional neural network for person redetection that jointly optimises verification and identification losses over a four image input group. Specifically, the proposed method overcomes the weakness of the typical triplet formulation by using groups of four images featuring two matched (i.e. the same identity) and two mismatched images. This allows us to jointly increase the interclass variations and reduce the intra-class variations in the learned feature space. The proposed approach also optimises over both the identification and verification losses, further minimising intra-class variation and maximising inter-class variation, improving overall performance. Extensive experiments on four challenging datasets, VIPeR, CUHK01, CUHK03 and PRID2011, demonstrates that the proposed approach achieves state-of-the-art performance.Comment: Published in WACV 201

    Composer Recognition based on 2D-Filtered Piano-Rolls

    Get PDF
    [TODO] Add abstract here

    Deep Image Retrieval: A Survey

    Get PDF
    In recent years a vast amount of visual content has been generated and shared from various fields, such as social media platforms, medical images, and robotics. This abundance of content creation and sharing has introduced new challenges. In particular, searching databases for similar content, i.e.content based image retrieval (CBIR), is a long-established research area, and more efficient and accurate methods are needed for real time retrieval. Artificial intelligence has made progress in CBIR and has significantly facilitated the process of intelligent search. In this survey we organize and review recent CBIR works that are developed based on deep learning algorithms and techniques, including insights and techniques from recent papers. We identify and present the commonly-used benchmarks and evaluation methods used in the field. We collect common challenges and propose promising future directions. More specifically, we focus on image retrieval with deep learning and organize the state of the art methods according to the types of deep network structure, deep features, feature enhancement methods, and network fine-tuning strategies. Our survey considers a wide variety of recent methods, aiming to promote a global view of the field of instance-based CBIR.Comment: 20 pages, 11 figure

    The GTZAN dataset: Its contents, its faults, their effects on evaluation, and its future use

    Get PDF
    The GTZAN dataset appears in at least 100 published works, and is the most-used public dataset for evaluation in machine listening research for music genre recognition (MGR). Our recent work, however, shows GTZAN has several faults (repetitions, mislabelings, and distortions), which challenge the interpretability of any result derived using it. In this article, we disprove the claims that all MGR systems are affected in the same ways by these faults, and that the performances of MGR systems in GTZAN are still meaningfully comparable since they all face the same faults. We identify and analyze the contents of GTZAN, and provide a catalog of its faults. We review how GTZAN has been used in MGR research, and find few indications that its faults have been known and considered. Finally, we rigorously study the effects of its faults on evaluating five different MGR systems. The lesson is not to banish GTZAN, but to use it with consideration of its contents.Comment: 29 pages, 7 figures, 6 tables, 128 reference

    Integration of informal music technologies in secondary school music lessons

    Get PDF
    date-added: 2011-08-12 11:03:06 +0100 date-modified: 2011-08-12 11:03:38 +0100date-added: 2011-08-12 11:03:06 +0100 date-modified: 2011-08-12 11:03:38 +0100This project was supported by EPSRC grant EP/I001832/1, ‘Musicology for the masses’

    Data-Driven Shape Analysis and Processing

    Full text link
    Data-driven methods play an increasingly important role in discovering geometric, structural, and semantic relationships between 3D shapes in collections, and applying this analysis to support intelligent modeling, editing, and visualization of geometric data. In contrast to traditional approaches, a key feature of data-driven approaches is that they aggregate information from a collection of shapes to improve the analysis and processing of individual shapes. In addition, they are able to learn models that reason about properties and relationships of shapes without relying on hard-coded rules or explicitly programmed instructions. We provide an overview of the main concepts and components of these techniques, and discuss their application to shape classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis, through reviewing the literature and relating the existing works with both qualitative and numerical comparisons. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.Comment: 10 pages, 19 figure

    DeepFirearm: Learning Discriminative Feature Representation for Fine-grained Firearm Retrieval

    Full text link
    There are great demands for automatically regulating inappropriate appearance of shocking firearm images in social media or identifying firearm types in forensics. Image retrieval techniques have great potential to solve these problems. To facilitate research in this area, we introduce Firearm 14k, a large dataset consisting of over 14,000 images in 167 categories. It can be used for both fine-grained recognition and retrieval of firearm images. Recent advances in image retrieval are mainly driven by fine-tuning state-of-the-art convolutional neural networks for retrieval task. The conventional single margin contrastive loss, known for its simplicity and good performance, has been widely used. We find that it performs poorly on the Firearm 14k dataset due to: (1) Loss contributed by positive and negative image pairs is unbalanced during training process. (2) A huge domain gap exists between this dataset and ImageNet. We propose to deal with the unbalanced loss by employing a double margin contrastive loss. We tackle the domain gap issue with a two-stage training strategy, where we first fine-tune the network for classification, and then fine-tune it for retrieval. Experimental results show that our approach outperforms the conventional single margin approach by a large margin (up to 88.5% relative improvement) and even surpasses the strong triplet-loss-based approach.Comment: 6 pages, 5 figures, accepted by ICPR 2018. Code are available at https://github.com/jdhao/deep_firearm. Dataset is available at http://forensics.idealtest.org/Firearm14k
    • …
    corecore