2,194 research outputs found

    Quantum Private Comparison: A Review

    Full text link
    As an important branch of quantum secure multiparty computation, quantum private comparison (QPC) has attracted more and more attention recently. In this paper, according to the quantum implementation mechanism that these protocols used, we divide these protocols into three categories: The quantum cryptography QPC, the superdense coding QPC, and the entanglement swapping QPC. And then, a more in-depth analysis on the research progress, design idea, and substantive characteristics of corresponding QPC categories is carried out, respectively. Finally, the applications of QPC and quantum secure multi-party computation issues are discussed and, in addition, three possible research mainstream directions are pointed out

    A lightweight three-user secure quantum summation protocol without a third party based on single-particle states

    Full text link
    In this paper, a lightweight three-user secure quantum summation protocol is put forward by using single-particle states, which can accomplish the goal that three users cooperate together to calculate the modulo 2 addition of their private messages without the help of a third party. This protocol only requires single-particle states rather than quantum entangled states as the initial quantum resource, and only needs single-particle measurements and Bell basis measurements. This protocol needs none of quantum entanglement swapping, the Pauli operations, the controlled-not (CNOT) operation, the Hadamard gate or a pre-shared private key sequence. Security analysis proves that this protocol is secure against both the outside attacks and the participant attacks. Compared with the existing two-dimensional three-user quantum summation protocols, this protocol more or less takes advantage over them on the aspects of the initial quantum resource, users' quantum measurement, the usage of quantum entanglement swapping, the usage of Pauli operations, the usage of CNOT operation or the usage of Hadamard gate.Comment: 1 Tabl

    Secure multiparty quantum computation for summation and multiplication

    Get PDF
    As a fundamental primitive, Secure Multiparty Summation and Multiplication can be used to build complex secure protocols for other multiparty computations, specially, numerical computations. However, there is still lack of systematical and efficient quantum methods to compute Secure Multiparty Summation and Multiplication. In this paper, we present a novel and efficient quantum approach to securely compute the summation and multiplication of multiparty private inputs, respectively. Compared to classical solutions, our proposed approach can ensure the unconditional security and the perfect privacy protection based on the physical principle of quantum mechanics

    Semi-quantum private comparison and its generalization to the key agreement, summation, and anonymous ranking

    Full text link
    Semi-quantum protocols construct connections between quantum users and ``classical'' users who can only perform certain ``classical'' operations. In this paper, we present a new semi-quantum private comparison protocol based on entangled states and single particles, which does not require pre-shared keys between the ``classical'' users to guarantee the security of their private data. By utilizing multi-particle entangled states and single particles, our protocol can be easily extended to multi-party scenarios to meet the requirements of multiple ``classical'' users who want to compare their private data. The security analysis shows that the protocol can effectively prevent attacks from outside eavesdroppers and adversarial participants. Besides, we generalize the proposed protocol to other semi-quantum protocols such as semi-quantum key agreement, semi-quantum summation, and semi-quantum anonymous ranking protocols. We compare and discuss the proposed protocols with previous similar protocols. The results show that our protocols satisfy the demands of their respective counterparts separately. Therefore, our protocols have a wide range of application scenarios.Comment: 19 pages 5 table

    Improvements on “Secure multi-party quantum summation based on quantum Fourier transform”

    Get PDF
    Recently, a quantum multi-party summation protocol based on the quantum Fourier transform has been proposed (Yang et al. in Quantum Inf Process 17:129, 2018). The protocol claims to be secure against both outside and participant attacks. However, a closer look reveals that the player in charge of generating the required multi-partite entangled states can launch two kinds of attacks to learn about other parties’ private integer strings without being caught. In this paper, we present these attacks and propose countermeasures to make the protocol secure again. The improved protocol not only can resist these attacks but also remove the need for the quantum Fourier transform and encoding quantum operations by participants
    • …
    corecore