Secure multiparty quantum computation for summation and multiplication

Run-hua Shi
University of Wollongong, rshi@uow.edu.au
Yi Mu
University of Wollongong, ymu@uow.edu.au
Hong Zhong
Anhui University
Jie Cui
Anhui University
Shun Zhang
Anhui University

Publication Details

Shi, R., Mu, Y., Zhong, H., Cui, J. \& Zhang, S. (2016). Secure multiparty quantum computation for summation and multiplication. Scientific Reports, 6 1-9.

Secure multiparty quantum computation for summation and multiplication

Abstract

As a fundamental primitive, Secure Multiparty Summation and Multiplication can be used to build complex secure protocols for other multiparty computations, specially, numerical computations. However, there is still lack of systematical and efficient quantum methods to compute Secure Multiparty Summation and Multiplication. In this paper, we present a novel and efficient quantum approach to securely compute the summation and multiplication of multiparty private inputs, respectively. Compared to classical solutions, our proposed approach can ensure the unconditional security and the perfect privacy protection based on the physical principle of quantum mechanics.

Disciplines

Engineering | Science and Technology Studies

Publication Details

Shi, R., Mu, Y., Zhong, H., Cui, J. \& Zhang, S. (2016). Secure multiparty quantum computation for summation and multiplication. Scientific Reports, 6 1-9.

Received: 25 September 2015
Accepted: 08 December 2015
Published: 21 January 2016

Secure Multiparty Quantum Computation for Summation and Multiplication

Run-hua Shi' ${ }^{1,2}$, Yi Mu ${ }^{2}$, Hong Zhong ${ }^{1}$, Jie Cui ${ }^{1}$ \& Shun Zhang ${ }^{1}$

As a fundamental primitive, Secure Multiparty Summation and Multiplication can be used to build complex secure protocols for other multiparty computations, specially, numerical computations. However, there is still lack of systematical and efficient quantum methods to compute Secure Multiparty Summation and Multiplication. In this paper, we present a novel and efficient quantum approach to securely compute the summation and multiplication of multiparty private inputs, respectively. Compared to classical solutions, our proposed approach can ensure the unconditional security and the perfect privacy protection based on the physical principle of quantum mechanics.

Secure Multiparty Computation (SMC) ${ }^{1}$ is an important branch in modern cryptography. Secure Multiparty Summation or Multiplication is a fundamental primitive of SMC that enables multiple parties to jointly compute the summation or multiplication of their respective private inputs without revealing any private input. As we know, Secure Multiparty Summation and Multiplication can be used to build complex secure protocols for other multiparty computations, specially, numerical computations. In addition, there are also lots of other important applications of Secure Multiparty Summation and Multiplication in distributed networks, such as secret sharing, electronic voting, secure sorting, data mining and so on.

On the one hand, there existed some classical protocols for Secure Multiparty Summation ${ }^{2-4}$ and Multiplication ${ }^{5-7}$, which were based on classical cryptography. However, classical cryptography cannot provide the unconditionally secure communications and cannot resist the attack of the quantum computer especially.

On the other hand, quantum cryptography can provide the unconditional security, which is guaranteed by physical principles of quantum mechanics. Since Bennett and Brassard ${ }^{8}$ presented the first quantum key distribution protocol (BB84 protocol), quantum cryptography has been widely studied and rapidly developed. Compared to classical cryptography, the most important advantage is that an eavesdropper can easily be detected by using the characteristics of quantum mechanics. Therefore, a lot of results have been gained, such as quantum key distribution, quantum teleportation, quantum secret sharing, quantum secure direct communication, quantum key agreement, quantum signature and so on. Furthermore, SMC is also studied extensively in quantum cryptography ${ }^{9-14}$.

However, there are only a few quantum protocols for Secure Multiparty Summation. In 2007, Du et al. ${ }^{15}$ presented a secure quantum addition module $n+1$ based on non-orthogonal states, where n denoted the number of all parties. In 2010, Chen et al. ${ }^{16}$ proposed another secure quantum addition module 2 based on multi-particle entangled states with the trusted third party. However, the module of the two protocols is too small, so that it limits their more extensive applications. Furthermore, the two protocols lack high communication efficiencies due to their bit-by-bit computation and communication. In addition, to the best of our knowledge, there is no any quantum protocol for Secure Multiparty Multiplication.

In this paper, we present a novel quantum approach to systematically and efficiently compute Secure Multiparty Summation and Multiplication, in which the computations of Secure Multiparty Summation and Multiplication are securely translated into the computations of the corresponding phase information by the quantum Fourier transform, and later the phase information is extracted out after performing an inverse quantum Fourier transform.

Here, we first introduce the quantum Fourier transform, which will be used later in proposed protocols. The quantum Fourier transform is a linear transformation on qubits, and is the quantum version of the standard

[^0]discrete Fourier transform. For $x \in\{0,1, \ldots, N-1\}$, the quantum Fourier transform and the inverse quantum Fourier transform are defined as follows ${ }^{17}$:
\[

$$
\begin{gather*}
Q F T:|x\rangle \rightarrow \frac{1}{\sqrt{N}} \sum_{y=0}^{N-1} e^{2 \pi i \frac{x}{N} y}|y\rangle, \tag{1}\\
Q F T^{-1}:|y\rangle \rightarrow \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} e^{-2 \pi i \frac{y}{N} x}|x\rangle . \tag{2}
\end{gather*}
$$
\]

Furthermore,

$$
\sum_{y=0}^{N-1} e^{2 \pi i \frac{x}{N} y}=\left\{\begin{array}{cc}
0 & \text { if } x \neq 0 \bmod N \tag{3}\\
N & \text { if } x=0 \bmod N
\end{array}\right.
$$

so,

$$
\begin{align*}
Q F T^{-1}\left(\frac{1}{\sqrt{N}} \sum_{y=0}^{N-1} e^{2 \pi i \frac{x}{N} y}|y\rangle\right) & =\frac{1}{\sqrt{N}} \sum_{y=0}^{N-1} e^{2 \pi i \frac{x}{N} y} Q F T^{-1}|y\rangle \\
& =\frac{1}{\sqrt{N}} \sum_{y=0}^{N-1} e^{2 \pi i \frac{x}{N} y} \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{-2 \pi i \frac{y}{N} j}|j\rangle \\
& =\frac{1}{N} \sum_{j=0}^{N-1 N-1} \sum_{y=0}^{2 \pi i \frac{x-j}{N} y}|j\rangle \\
& =\frac{1}{N} \sum_{y=0}^{N-1} e^{2 \pi i \frac{x-x}{N} y}|x\rangle+\frac{1}{N} \sum_{j=0 \Lambda j \neq x}^{N-1}\left(\sum_{y=0}^{N-1} e^{2 \pi i \frac{x-j}{N} y}\right)|j\rangle \\
& =\frac{1}{N} \sum_{y=0}^{N-1}|x\rangle+\frac{1}{N} \sum_{j=0 \Lambda j \neq x}^{N-1} 0 \cdot|j\rangle=|x\rangle \tag{4}
\end{align*} .
$$

That is,

$$
\begin{equation*}
Q F T^{-1}(Q F T|x\rangle)=|x\rangle . \tag{5}
\end{equation*}
$$

In addition, another multi-qubit quantum logic gate, which will be used later in proposed protocols, is the controlled-NOT or CNOT gate: $|00\rangle \rightarrow|00\rangle,|01\rangle \rightarrow|01\rangle,|10\rangle \rightarrow|11\rangle$ and $|11\rangle \rightarrow|10\rangle$, where the first qubit is the control qubit, and the second qubit is the target qubit. That is, if the control qubit is set to 0 , then the target qubit is left alone. If the control qubit is set to 1 , then the target qubit is flipped.

Results

Proposed protocols. Secure multiparty quantum summation. Assume that there are n parties: $P_{1}, P_{2}, \ldots, P_{n}$ $(n>2)$, where each party $P_{k}(1 \leq k \leq n)$ has a secret integer $x_{k} \in\{0,1, \ldots, N-1\}\left(N=2^{m}\right)$, and further all n parties want to jointly compute the summation $\sum_{k=1}^{n} x_{k} \bmod N$ without revealing their respective secret $x_{k} s$. In the following Protocol I, we suppose that P_{1} is the initiator party.

Protocol I (Secure multiparty quantum summation)
Step 1. The initiator P_{1} first prepares an m-qubit basis state $\left|x_{1}\right\rangle_{h}$, where $m=\log N$ and x_{1} is his private secret. Then P_{1} applies a quantum Fourier transform to the state $\left|x_{1}\right\rangle_{h}$ and gets the resultant state $\left|\psi_{1}\right\rangle$. That is,

$$
\begin{equation*}
\left|\psi_{1}\right\rangle=Q F T\left|x_{1}\right\rangle_{h}=\frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{2 \pi i \frac{x_{1}}{N} j}|j\rangle_{h} . \tag{6}
\end{equation*}
$$

Step 2. P_{1} prepares another m-qubit ancillary state $|0\rangle_{t}$ and further performs m CNOT gate operators on the product state $\left|\psi_{1}\right\rangle|0\rangle_{t^{\prime}}$, where each qubit of the first m qubits is the control qubit and the corresponding qubit of the second m qubits is the target qubit. Here we call the resultant state $\left|\psi_{2}\right\rangle$, which is written as

$$
\begin{align*}
\left|\psi_{2}\right\rangle= & \left.\operatorname{CNOT}^{\otimes m}\left|\psi_{1}\right\rangle 0\right\rangle_{t} \\
= & \operatorname{CNOT}(1, m+1) \otimes \operatorname{CNOT}(2, m+2) \ldots \\
& \otimes \operatorname{CNOT}(m, 2 m)\left(\frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{2 \pi i \frac{x_{1}}{N} j}|j\rangle_{h}|0\rangle_{t}\right) . \\
= & \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{2 \pi i \frac{x_{1}}{N} j}|j\rangle_{h}|j\rangle_{t} \tag{7}
\end{align*}
$$

Clearly, $\left|\psi_{2}\right\rangle$ is an entangled state, where the subscript h or t denotes that the qubits will stay at home or be transmitted through the quantum channel.

Step 3. P_{1} sends the second m qubits (i.e., the ancillary state $|j\rangle_{t}$) to P_{2} through the authenticated quantum channel.

Step 4. After receiving the ancillary state $|j\rangle_{t^{\prime}} P_{2}$ first prepares his secret state $\left|x_{2}\right\rangle$. Then he applies an oracle operator C_{j} on $|j\rangle_{t}\left|x_{2}\right\rangle$, where C_{j} is defined by

$$
\begin{equation*}
C_{j}:|j\rangle_{t}\left|x_{2}\right\rangle \rightarrow|j\rangle_{t} U^{j}\left|x_{2}\right\rangle, \tag{8}
\end{equation*}
$$

with

$$
\begin{equation*}
U\left|x_{2}\right\rangle=e^{2 \pi i \frac{x_{2}}{N}\left|x_{2}\right\rangle .} \tag{9}
\end{equation*}
$$

That is, $\left|x_{2}\right\rangle$ is an eigenvector of U with the eigenvalue $e^{2 \pi i \frac{x_{2}}{N}}$. After applying the oracle operator C_{j}, the whole composite quantum systems of P_{1} and P_{2} are in the following state

$$
\begin{align*}
\left|\psi_{3}\right\rangle & =C_{j} \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{2 \pi i \frac{x_{1}}{N} j}|j\rangle_{h}|j\rangle_{t}\left|x_{2}\right\rangle \\
& =\frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{2 \pi i \frac{x_{j}}{N}}|j\rangle_{h}|j\rangle_{t} U^{j}\left|x_{2}\right\rangle \\
& =\frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{2 \pi i \frac{x_{1} j}{N}}|j\rangle_{h}|j\rangle_{t} e^{2 \pi i \frac{x_{2}}{N} j}\left|x_{2}\right\rangle \\
& =\frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{2 \pi i \frac{x_{1}+x_{2}}{N} j}|j\rangle_{h}|j\rangle_{t}\left|x_{2}\right\rangle \tag{10}
\end{align*} .
$$

Step 5. Furthermore, P_{2} passes the ancillary state $|j\rangle_{t}$ to P_{3} through the authenticated quantum channel and keeps $\left|x_{2}\right\rangle$ in secret. Afterward, P_{3} executes the similar process of P_{2}, and so on. This process is repeated $n-1$ times, so that, if everyone honestly executes the protocol, the composite quantum systems of all n parties are in the following state

$$
\begin{equation*}
\left|\psi_{4}\right\rangle=\frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{2 \pi i\left(\frac{\sum_{k=1}^{n} x_{k}}{N}\right)} j_{|j\rangle_{h}}|j\rangle_{t}\left|x_{2}\right\rangle \ldots\left|x_{n}\right\rangle . \tag{11}
\end{equation*}
$$

Step 6. Finally, P_{n} sends the ancillary state $|j\rangle_{t}$ back to P_{1}. After receiving the ancillary state $|j\rangle_{t}, P_{1}$ again applies $C N O T{ }^{\otimes m}$ on his $2 m$ qubits, where each qubit of the first m qubits is the control qubit and the corresponding qubit of the second m qubits is the target qubit. Call the resultant state $\left|\psi_{5}\right\rangle$. That is,

$$
\begin{align*}
&\left|\psi_{5}\right\rangle=\text { CNOT }^{\otimes m}\left|\psi_{4}\right\rangle \\
&=\text { CNOT }^{\otimes m}\left[\frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{2 \pi i}\left(\frac{\sum_{k=1}^{n} x_{k}}{N}\right) j\right. \\
&\left.|j\rangle_{h}|j\rangle_{t}\left|x_{2}\right\rangle \ldots\left|x_{n}\right\rangle\right] . \tag{12}\\
&=\frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{2 \pi i\left(\frac{\sum_{k=1}^{n} x_{k}}{N}\right)}{ }^{j}|j\rangle_{h}|0\rangle_{t}\left|x_{2}\right\rangle \ldots\left|x_{n}\right\rangle
\end{align*}
$$

Step 7. Furthermore, P_{1} measures the second m qubits (i.e., $|0\rangle_{+}$) in the computational basis. If the measured result is $|0\rangle$, then he continues to execute the next step; otherwise he believes that there is at least one dishonest party and ends this protocol.

Step 8. Finally, P_{1} applies $Q F T^{-1}$ to the first m qubits and further measures it to obtain $|\omega\rangle$, where $\omega=\sum_{k=1}^{n} x_{k} \bmod N$.

The correctness proof.

$$
\begin{aligned}
Q F T^{-1}\left(\frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{2 \pi i\left(\frac{\sum_{k=1}^{n} x_{k}}{N}\right) j}|j\rangle_{h}\right) & =\frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{2 \pi i\left(\frac{\sum_{k=1}^{n} x_{k}}{N}\right)} j_{Q F T^{-1}}|j\rangle_{h} \\
& =\frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{2 \pi i\left(\frac{\sum_{k=1}^{n} x_{k}}{N}\right)} j\left(\frac{1}{\sqrt{N}} \sum_{l=0}^{N-1} e^{\left.-2 \pi i \frac{j}{N} l|l\rangle_{h}\right)}\right. \\
& =\frac{1}{N} \sum_{j=0}^{N-1 N-1} \sum_{l=0}^{2 \pi i \frac{\left(\sum_{k=1}^{n} x_{k}\right)-l}{N} j}|l\rangle_{h}
\end{aligned}
$$

$$
\begin{align*}
&= \frac{1}{N} \sum_{j=0}^{N-1}\left|\sum_{k=1}^{n} x_{k} \bmod N\right\rangle_{h} \\
&+\frac{1}{N} \sum_{\substack{l=0 \\
l=\sum_{k=1}^{n} x_{k} m o d N}}^{N-1}\left(\sum_{j=0}^{N-1} e^{\left.2 \pi i \frac{\left(\sum_{k=1}^{n} x_{k}\right)-l}{N} j\right)|l\rangle_{h}}\right. \\
&=\left|\sum_{k=1}^{n} x_{k} \bmod N\right\rangle_{h}+\frac{1}{N} \sum_{l \neq \sum_{k=1}^{n=0} x_{k} m o d N}^{N-1} 0 \cdot|l\rangle_{h} \quad \text { (by Eq. (3)) } \\
&=\left|\sum_{k=1}^{n} x_{k} \bmod N\right\rangle_{h}=|\omega\rangle_{h} . \tag{13}
\end{align*}
$$

Therefore, if all parties honestly execute this protocol, P_{1} will rightly get $\sum_{k=1}^{n} x_{k} \bmod N$.

Secure multiparty quantum multiplication. Assume that there are n parties $P_{1}, P_{2}, \ldots, P_{n}(n>2)$, each party with a private secret $x_{k} \in\{0,1,2 \ldots, N-1\}\left(N=2^{m}\right)$, and all n parties want to jointly compute the multiplication of their respective private secret, i.e., $\prod_{k=1}^{n} x_{k} \operatorname{modN}$. Since each secret x_{k} can be split and expressed as $x_{k}=2^{m_{k}} \cdot s_{k}$, where s_{k} is an odd integer, then we can get

$$
\begin{equation*}
\prod_{k=1}^{n} x_{k} \bmod N=\left(2^{\sum_{k=1}^{n} m_{k}} \prod_{k=1}^{n} s_{k}\right) \bmod N . \tag{14}
\end{equation*}
$$

By Eq. (14), if we get the results of $\sum_{k=1}^{n} m_{k} \bmod N$ and $\prod_{k=1}^{n} s_{k} \bmod N$, then we can easily compute $\prod_{k=1}^{n} x_{k} \bmod N$. Accordingly, the computation of $\prod_{k=1}^{n} x_{k} \bmod N$ can be translated into the computations of $\sum_{k=1}^{n} m_{k} \bmod N$ and $\prod_{k=1}^{n} s_{k} \bmod N$, respectively. We have proposed Protocol I to compute $\sum_{k=1}^{n} m_{k} \bmod N$. Furthermore, we present Protocol II to compute $\prod_{k=1}^{n} s_{k} \operatorname{modN}$, where all $s_{k} s$ are odd integers. Similarly, in the following Protocol II, we suppose that P_{1} is the initiator.

Protocol II (Secure multiparty quantum multiplication)
Step 1. The initiator P_{1} randomly chooses an odd integer $r \in\{1,3 \ldots, N-1\}$ and further prepares two m qubits in the original state $\frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{2 \pi i \frac{T_{N}}{N}}|j\rangle_{t_{1}}|j\rangle_{t_{2}}$, where the preparation process is the same as that of Step 1 and 2 in Protocol I. Then P_{1} sends $|j\rangle_{t_{1}}$ to P_{2} through the authenticated quantum channel and keeps $|j\rangle_{t_{2}}$ in hand.

Step 2. After receiving $|j\rangle_{t_{1}}, P_{2}$ applies an oracle operator U_{2} on $|j\rangle_{t_{1}}$ by his private secret s_{2}, where U_{2} is defined by,

$$
\begin{equation*}
U_{2}|j\rangle_{t_{1}}=\left|j s_{2}^{-1} \bmod N\right\rangle_{t_{1}} \tag{15}
\end{equation*}
$$

Please note that s_{2} is an odd integer and $N=2^{m}$, thus there exists its modulo- N multiplicative inverse s_{2}^{-1}, which implies that U_{2} is inverse. Furthermore, P_{2} sends $\left|j s_{2}^{-1} \bmod N\right\rangle_{t_{1}}$ to P_{3} through the authenticated quantum channel. Afterward, P_{3} executes the similar process of P_{2} (i.e., $U_{3}\left|j s_{2}^{-1} \bmod N\right\rangle_{t_{1}}=\left|j s_{2}^{-1} s_{3}^{-1} \bmod N\right\rangle_{t_{1}}$), and so on. This process is repeated $n-1$ times, so that, if everyone honestly executes the protocol, the final quantum states of the qubits of the subscripts t_{1} and t_{2} are in,

$$
\begin{equation*}
\frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{2 \pi i \frac{r}{N} j}\left|j s_{2}{ }^{-1} \ldots s_{n}{ }^{-1} \bmod N\right\rangle_{t_{1}}|j\rangle_{t_{2}} . \tag{16}
\end{equation*}
$$

Finally, P_{n} sends $\left|j s_{2}^{-1} \ldots s_{n}^{-1} \bmod N\right\rangle_{t_{1}}$ back to P_{1}.
Step 3. After receiving the returned state $\left|j s_{2}^{-1} \ldots s_{n}^{-1} \bmod N\right\rangle_{t_{1}}, P_{1}$ continues to send $|j\rangle_{t_{2}}$ to P_{2} through the authenticated quantum channel.

Step 4. After receiving the state $|j\rangle_{t_{2}}, P_{2}$ again applies the oracle operator U_{2} on $|j\rangle_{t_{2}}$ by his private input s_{2}, i.e., $U_{2}|j\rangle_{t_{2}}=\left|j s_{2}^{-1} \bmod N\right\rangle_{t_{2}}$. Furthermore he sends it to P_{3} through the authenticated quantum channel, and so on. This process is repeated $n-1$ times, so that, if everyone honestly executes the protocol, the final quantum states of the $2 m$ qubits are in,

$$
\begin{equation*}
\frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{2 \pi i \frac{r}{N} j}\left|j s_{2}^{-1} \ldots s_{n}^{-1} \bmod N\right\rangle_{t_{1}}\left|j s_{2}^{-1} \ldots s_{n}^{-1} \bmod N\right\rangle_{t_{2}} \tag{17}
\end{equation*}
$$

Finally, P_{n} again sends $\left|j s_{2}^{-1} \ldots s_{n}^{-1} \bmod N\right\rangle_{t_{2}}$ back to P_{1}.
Step 5. After receiving the state $\left|j s_{2}^{-1} \ldots s_{n}^{-1} \bmod N\right\rangle_{t_{2}}, P_{1}$ performs m CNOT gate operators on the two returned states, such that the quantum systems of the subscripts t_{1} and t_{2} will be disentangled. That is,

$$
\begin{align*}
& C N O T T^{\otimes m} \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{2 \pi i \frac{r}{N} j}\left|j s_{2}^{-1} \ldots s_{n}^{-1} \bmod N\right\rangle_{t_{1}}\left|j s_{2}^{-1} \ldots s_{n}^{-1} \bmod N\right\rangle_{t_{2}} \\
& \quad=\frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{2 \pi i \frac{r}{N} j}\left|j s_{2}^{-1} \ldots s_{n}^{-1} \bmod N\right\rangle_{t_{1}}|0\rangle_{t_{2}} . \tag{18}
\end{align*}
$$

Furthermore, P_{1} measures the qubits of the subscript t_{2} in the computation basis. If the measured result is $|0\rangle_{t}$, then he continues to execute the next step. Otherwise, he believes that there is at least one dishonest party and ends this protocol.

Step 6. Finally P_{1} applies an inverse quantum Fourier transform $Q F T^{-1}$ on the remaining qubits and further measures it to obtain $|\varpi\rangle_{t_{1}}$ in the computation basis, where $\varpi=r s_{2} \ldots s_{n} \bmod N$. Then P_{1} outputs $s_{1} r^{-1} \varpi \bmod N$. That is, $\prod_{k=1}^{n} s_{k} \bmod N=s_{1} r^{-1} \varpi \bmod N$.

The correctness proof.

$$
\begin{align*}
& Q F T^{-} \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{2 \pi i \frac{r}{N} j}\left|j s_{2}^{-1} \ldots s_{n}^{-1} \bmod N\right\rangle_{t_{1}} \\
& =\frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{2 \pi i \frac{r}{N} j} Q F T^{-1}\left|j s_{2}^{-1} \ldots s_{n}^{-1} \bmod N\right\rangle_{t_{1}} \\
& =\frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{2 \pi i \frac{r}{N} j} \frac{1}{\sqrt{N}} \sum_{l=0}^{N-1} e^{-2 \pi i \frac{j s_{2}{ }^{-1} \ldots s_{n}^{-1} \bmod N}{N}}|l\rangle_{t_{1}} \\
& =\frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{2 \pi i \frac{r}{N} j} \frac{1}{\sqrt{N}} \sum_{l=0}^{N-1} e^{-2 \pi i \frac{l_{2}{ }^{-1} \ldots s_{n}{ }^{-1} \bmod N}{N}}{ }^{j}|l\rangle_{t_{1}} \\
& =\frac{1}{N} \sum_{l=0}^{N-1 N-1} \sum_{j=0}^{2 \pi i \frac{r-l s_{2}{ }^{-1} \ldots s_{n}{ }^{-1}}{N} j}|l\rangle_{t_{1}} \\
& =\frac{1}{N} \sum_{j=0}^{N-1}\left|r s_{2} \ldots s_{n} \bmod N\right\rangle_{t_{1}}+\frac{1}{N} \sum_{\substack{l=0 \\
l \neq s_{2} \ldots s_{n} \operatorname{modN}}}^{N-1} \sum_{j=0}^{N-1} e^{2 \pi i \frac{r-l s_{2}{ }^{-1} \ldots s_{n}{ }^{-1}}{N} j}| \rangle_{t_{1}} \\
& =\frac{1}{N} \sum_{j=0}^{N-1}\left|r s_{2} \ldots s_{n} \bmod N\right\rangle_{t_{1}}+\frac{1}{N} \sum_{\substack{l=0 \\
l \neq r_{2} \ldots s_{n} \bmod N}}^{N-1} 0|l\rangle_{t_{1}} \text { (by Eq. (3)) } \\
& =\left|r s_{2} \ldots s_{n} \bmod N\right\rangle_{t_{1}}=|\varpi\rangle_{t_{1}}, \tag{19}
\end{align*}
$$

since

$$
\begin{equation*}
r-l s_{2}^{-1} \ldots s_{n}^{-1}=0 \bmod N \Rightarrow l=r s_{2} \ldots s_{n} \bmod N \tag{20}
\end{equation*}
$$

Obviously, $s_{1} r^{-1} \varpi \bmod N=s_{1} r^{-1} r s_{2} \ldots s_{n} \bmod N=s_{1} s_{2} \ldots s_{n} \bmod N$, where r is an odd integer. Therefore, Protocol II can rightly output $\prod_{k=1}^{n} s_{k} \bmod N$. Furthermore, in order to perfectly compute $\prod_{k=1}^{n} x_{k} \bmod N$, the initiator first calls Protocol I to securely compute $M=\sum_{k=1}^{n} m_{k} \bmod N$ and then calls Protocol II to securely compute $S=\prod_{k=1}^{n} s_{k} \bmod N$. Finally, the initiator computes $X=\left(2^{M} S\right) \bmod N$. Obviously, $X=\prod_{k=1}^{n} x_{k} \bmod N$.

Security Analysis. We have analyzed the correctness of Protocol I and II, and further analyze their securities. In order to save space, please note that we mainly analyze the security of Protocol I, because the security of Protocol II is the same as that of Protocol I.

We first analyze that P_{2} does not get any secret information about the initiator P_{1} 's input x_{1}. In Protocol I, P_{1} only sends the ancillary state $|j\rangle_{t}$ to P_{2} without any classical information. So, for a dishonest P_{2}, if he wants to eavesdrop P_{1} 's secret, all possible attacks he can perform with the present technology are as follows:
(1) P_{2} directly measures the ancillary state $|j\rangle_{t}$ in the computational basis. Obviously, he will get $|j\rangle$ $(j \in\{0,1, \ldots, N-1\})$ with the equal probability of $\frac{1}{N}$, but the measured result j is independent of P_{1} 's secret x_{1}. That is, this attack is infeasible.
(2) After applying a unitary operator on the ancillary state $|j\rangle_{t} P_{2}$ again measures it. Especially, P_{2} has a knowledge that P_{1} 's secret state $\left|x_{1}\right\rangle$ has evolved into the same state (i.e., $|j\rangle_{h}$) as the ancillary state $|j\rangle_{t}$, based on the quantum Fourier transform, so he may perform an inverse quantum Fourier transform $Q F T^{-1}$ on the ancillary state $|j\rangle_{t}$ to expect to extract out x_{1}. That is, this attack can be described as follows:

$$
\begin{align*}
Q F T^{-1} \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{2 \pi i \frac{x_{1}}{N}}|j\rangle_{h}|j\rangle_{t} & =\frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{2 \pi i \frac{x_{1}}{N} j}|j\rangle_{h} Q F T^{-1}|j\rangle_{t} \\
& =\frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{2 \pi i \frac{x_{1}}{N} j}|j\rangle_{h}\left(\frac{1}{\sqrt{N}} \sum_{l=0}^{N-1} e^{-2 \pi i \frac{j}{N}}|l\rangle_{t}\right) \\
& =\frac{1}{N} \sum_{l=0}^{N-1 N-1} \sum_{j=0}^{2 \pi i \frac{x_{1}-l}{N} j}|j\rangle_{h}|l\rangle_{t} . \tag{21}
\end{align*}
$$

By the above equation, if P_{2} measures the ancillary state, he will get $|l\rangle_{t}(l \in\{0,1, \ldots, N-1\})$ with the equal probability of $\frac{1}{N}$. It implies that P_{2} cannot get any secret information about P_{1} 's private input, because he cannot extract out the global phase information from the partial qubits of the entangled quantum systems with the subscripts h and t. In fact, any local unitary operator on the partial qubits cannot fully disentangle the entanglement of the composite system unless directly measured. Therefore, even if P_{2} performs this attack, he still cannot get any private information about P_{1} 's secret x_{1}.
(3) P_{2} performs a more complicated entangle-measure attack that he is able to prepare another ancillary system $|0\rangle_{P_{2}}$ and entangle the two ancillary systems by his local unitary operations, where one is transmitted from P_{1}, and afterward he can measure the ancillary system prepared by himself to get the partial information about P_{1} 's private inputs. P_{2} 's dishonest action when he receives P_{1} 's ancillary $|j\rangle_{t}$ can be described by a unitary operator $\widetilde{U}_{t P_{2}}$, which acts on $|j\rangle_{t}$ and $|0\rangle_{P_{2}}$. We can describe it as follows:

$$
\begin{equation*}
\widetilde{U}_{t P_{2}}|j\rangle_{t}|0\rangle_{P_{2}}=\sqrt{\eta_{j}}|j\rangle_{t}|\phi(j)\rangle_{P_{2}}+\sqrt{1-\eta_{j}}|V(j)\rangle_{t P_{2}}, \tag{22}
\end{equation*}
$$

where $|V(j)\rangle_{t P_{2}}$ is a vector orthogonal to $|j\rangle_{t}|\phi(j)\rangle_{P_{2}}$, i.e.,

$$
\begin{equation*}
{ }_{t}\left\langle\left. j\right|_{P_{2}}\langle\phi(j) \mid V(j)\rangle_{t P_{2}}=0 .\right. \tag{23}
\end{equation*}
$$

In order to completely pass the honest test (see Step 7), it can easily deduce that $\eta_{j}=1$. That is, the whole quantum systems of P_{1} and P_{2} should be in the following state after performing $\tilde{U}_{t P_{2}}$:

$$
\begin{equation*}
\widetilde{U}_{t P_{2}} \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{2 \pi i \frac{x_{1}}{N}}|j\rangle_{h}|j\rangle_{t}|0\rangle_{P_{2}}=\frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{2 \pi i \frac{x_{1}}{N} j}|j\rangle_{h}|j\rangle_{t}|\phi(j)\rangle_{P_{2}} . \tag{24}
\end{equation*}
$$

Then P_{2} sends $|j\rangle_{t}$ back to P_{1}. After P_{1} performing $C N O T^{\otimes m}$ and further measuring the ancillary system t, the state of the remaining quantum system becomes

$$
\begin{equation*}
\frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{2 \pi i \frac{x_{1}}{N}}|j\rangle_{h}|\phi(j)\rangle_{P_{2}} . \tag{25}
\end{equation*}
$$

Now if P_{2} measures his ancillary state $|\phi(j)\rangle_{P_{2}}$, as the above analysis in the case of (2), he still cannot get any secret information about x_{1} because of the entanglement of $|j\rangle_{h}$ and $|\phi(j)\rangle_{P_{2}}$. If P_{1} further applies $Q F T^{-1}$ to the first m qubits, the state of the remaining quantum system will be updated into

$$
\begin{align*}
& \text { QFT } T^{-1} \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{2 \pi i \frac{x_{1}}{N} j}|j\rangle_{h}|\phi(j)\rangle_{P_{2}} \\
& \quad=\frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{2 \pi i \frac{x_{1}}{N} j} Q F T^{-1}|j\rangle_{h}|\phi(j)\rangle_{P_{2}} \\
& \quad=\frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{2 \pi i \frac{x_{1}}{N} j}\left(\frac{1}{\sqrt{N}} \sum_{l=0}^{N-1} e^{-2 \pi i \frac{j}{N} l}|l\rangle_{h}\right)|\phi(j)\rangle_{P_{2}} \\
& \quad=\frac{1}{N} \sum_{j=0}^{N-1} e^{2 \pi i \frac{x_{1}}{N} j}\left[e^{-2 \pi i \frac{x_{1}}{N} j}\left|x_{1}\right\rangle_{h}+\sum_{l=0 \wedge l \neq x_{1}}^{N-1} e^{-2 \pi i \frac{l}{N} j}|l\rangle_{h}\right]|\phi(j)\rangle_{P_{2}} \\
& \tag{26}\\
& \quad=\frac{1}{N} \sum_{j=0}^{N-1}\left|x_{1}\right\rangle_{h}|\phi(j)\rangle_{P_{2}}+\frac{1}{N} \sum_{j=0, l=0 \wedge l \neq x_{1}}^{N-1} e^{2 \pi i \frac{x_{1}-l}{N} j}|l\rangle_{h}|\phi(j)\rangle_{P_{2}} .
\end{align*}
$$

This equation shows that if P_{1} measures his remaining m qubits, he will get $l l_{h}(l \in\{0,1, \ldots, N-1\})$ with the equal probability of $\frac{1}{N}$, which implies that the probability of getting $\left|x_{1}\right\rangle_{h}$ is also $\frac{1}{N}$, unless $\phi(j)$ is independent of j. Similarly, P_{2} cannot get the secret x_{1} with the probability of more than $\frac{1}{N}$ due to their entanglement yet. It implies that P_{2} cannot get any secret information about P_{1} 's private input x_{1}. Therefore, the entangle-measure attack is infeasible.

From what we have analyzed above, we can see clearly that P_{2} cannot get any secret information about x_{1}. Furthermore, we can easily and naturally generalize that any party $P_{k}(k \neq 1)$ cannot obtain any secret information about P_{1} 's private input. Therefore, the initiator's private input is unconditionally secure against other dishonest parties. In turn, if all party honesty execute this protocol, P_{1} only gets the final summation $\sum_{k=1}^{n} x_{i} \bmod N$ $(n>2)$, instead of single party's private secret x_{k}. However, if the parties P_{k-1} and P_{k+1} are dishonest, they can collude to get P_{k} 's private input x_{k}. In order to overcome this weakness, we can use the communication model in a random order instead of the fixed order, that is, how to choose the next party is randomly determined by the party himself, not pre-determined by a designated party.

In addition, in order to full resist the collusion attack of any less $n-1$ parties, we can design the following Protocol III, in which all parties are full parity.

Protocol III (to compute $\sum_{k=1}^{n} x_{i} \bmod N$)
Round 1
Step 1. Each party $P_{k}(1 \leq k \leq n)$ randomly generates $n-1$ integers $x_{k 1}, x_{k 2}, \ldots, x_{k(n-1)}$ in $\{0,1, \ldots, N-1\}$, and then computes $x_{k n}=\left(x_{k}-\sum_{j=1}^{n-1} x_{k j}\right) \bmod N$. That is,

$$
\begin{equation*}
x_{k}=\sum_{j=1}^{n} x_{k j} \bmod N . \tag{27}
\end{equation*}
$$

Step 2. Each party $P_{k}(1 \leq k \leq n)$ as the initiator calls Protocol I to compute

$$
\begin{equation*}
y_{k}=\sum_{j=k}^{(k+n-1) \bmod n} x_{j k} \bmod N, \tag{28}
\end{equation*}
$$

where $x_{k k}$ is P_{k} 's the initial input.

Round 2

Finally, all parties designate an agent who could be one of them to again call Protocol I to compute and announce

$$
\begin{equation*}
y=\sum_{k=1}^{n} y_{k} \bmod N . \tag{29}
\end{equation*}
$$

Obviously,

$$
\begin{align*}
y & =\sum_{k=1}^{n} y_{k} \bmod N \\
& =\sum_{k=1}^{n} \sum_{j=k}^{(k+n-1) \bmod n} x_{j k} \bmod N \\
& =\sum_{j=1}^{n} \sum_{k=1}^{n} x_{j k} \bmod N \\
& =\sum_{j=1}^{n} x_{j} \bmod N \tag{30}
\end{align*}
$$

Because Protocol I can ensure the unconditional security of the private input of the initiator, every sub-secret $x_{k k}$ of $P_{k}(1 \leq k \leq n)$ in Round 1 of Protocol III is unconditionally secure against any less $n-1$ parties. Therefore, Protocol III is unconditional secure against any collusion attack, unless there are $n-1$ cheating parties.

As for Protocol II, obviously P_{1} 's secret s_{1} is unconditionally secure because the transmitted quantum messages don't include any private information about s_{1}. Conversely, if all parties honestly execute Protocol II, P_{1} only gets the final multiplication $\prod_{k=1}^{n} s_{i} \bmod N(n>2)$, instead of certain party's secret s_{k}. In addition, the n-th party P_{n} can easily perform an intercept-resend attack. That is, he intercepts all qubits passing through his hands, and then sends fake qubits back to P_{1}. Accordingly, P_{n} may finally obtain $|\varpi\rangle_{t_{1}}$ after applying m CNOT gate operators and an inverse quantum Fourier transform $Q F T^{-1}$ to his intercepted qubits, where $\varpi=r s_{2} \ldots s_{n} \operatorname{modN}$. However, P_{n} does not know r, so he still cannot get any secret information about other parties' private inputs. Therefore, this attack is infeasible. Furthermore, in order to resist the collusion attack, we can also use the communication model in a random order instead of the fixed order. Similarly, we can also design the unconditionally secure quantum protocol for Secure Multiparty Multiplication.

Protocol IV (to compute $\prod_{k=1}^{n} x_{k} \bmod \mathrm{~N}$)

Round 1

Step 1. Each party $P_{k}(1 \leq k \leq n)$ splits his secret x_{k} into n random integers $x_{k 1}, x_{k 2}, \ldots, x_{k n}$ in $\{0,1, \ldots, N-1\}$, such that

$$
\begin{equation*}
x_{k}=\prod_{j=1}^{n} x_{k j} \bmod N \tag{31}
\end{equation*}
$$

where $x_{k j}=2^{m_{k j}} \cdot s_{k j}$. That is, $\prod_{k=1}^{n} x_{k} \bmod N=2^{\sum_{k=1}^{n} \sum_{j=1}^{n} m_{k j}} \prod_{k=1}^{n} \prod_{j=1}^{n} s_{k j} \bmod N$.

Step 2. Each party $P_{k}(1 \leq k \leq n)$ as the initiator calls Protocol III to compute

$$
\begin{equation*}
M=\sum_{k=1}^{n} \sum_{j=1}^{n} m_{j k} \bmod N \tag{32}
\end{equation*}
$$

where $m_{k k}$ is P_{k} 's the initial input.
Step 3. At the same time, each party $P_{k}(1 \leq k \leq n)$ as the initiator calls Protocol II to compute

$$
\begin{equation*}
s_{k}=\prod_{j=1}^{n} s_{j k} \bmod N . \tag{33}
\end{equation*}
$$

where $s_{k k}$ is P_{k} 's the initial input.
Round 2
Finally, all parties designate an agent who could be one of them to again call Protocol II to compute $S=\prod_{k=1}^{n} s_{k} \bmod N$ and to further announce

$$
\begin{equation*}
X=2^{M} \operatorname{Smod} N \tag{34}
\end{equation*}
$$

As for the security of the quantum channel, we can use the decoy technology to check eavesdropping in all proposed protocols. That is, the initiator randomly inserts enough decoy particles into the qubit sequence to be transmitted, where every decoy particle is prepared randomly with either Z-basis (i.e. $\{|0\rangle,|1\rangle\}$ or X-basis (i.e. $\left.\left\{\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle), \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)\right\}\right)$. After confirming that the receiver has received the transmitted sequence, the initiator announces the positions of partial decoy particles and the corresponding measurement basis. The receiver measures these decoy particles according to the initiator's announcements and tells the initiator his measurement results. Then the initiator compares the measurement results of the receiver with the initial states of these corresponding decoy particles in the transmitted sequence and analyzes the security of the transmissions. If the error rate is higher than the threshold determined by the channel noise, they cancel this protocol and restarts; or else they continue to the next step.

In addition, the authenticated quantum channel can further ensure the security of quantum communications. Like most existing secure multiparty quantum computations, our protocols need there is an authenticated quantum channel. This is the only assumption we need to have for proposed protocols to work. In principle, we may use a quantum authentication scheme (QAS) ${ }^{18}$ based on Clifford operators introduced in ${ }^{19}$ to implement it. We may also use quantum encryptions combined with classical authenticated keys ${ }^{20,21}$. In addition, we may still ensure the authentication by sharing the entangled quantum resources in advance ${ }^{22}$ or using the detecting (or decoy) particle technologies ${ }^{23}$.

Discussion

In this paper, we presented a novel and efficient quantum approach to systematically compute secure multiparty summation and multiplication. In our approach, there is an initiator who prepares an entangled state and further transmits the partial qubits of the entangled state to every party in turn through the quantum channel. According to the different computations, there are two specific processing ways: the receiver in computing the summation adds his secret into the global phase of the entangled state by an oracle operator, while the receiver in computing the multiplication embeds his secret into the received basis state by another oracle operator. Finally, the initiator takes the transmitted qubits back and subtly extracts out the corresponding summation and multiplication from the phase information by an inverse quantum Fourier transform. More specifically, we proposed several quantum protocols for secure multiparty summation and multiplication, where Protocol I and II have higher efficiency due to the linear communication complexity, and Protocol III and IV provide the unconditional security and the perfect privacy protection with $O\left(n^{2}\right)$ communication complexity.

In conclusion, our approach securely implements the fundamental arithmetic operations (i.e., summation and multiplication) in secret-by-secret way instead of bit-by-bit way, which may give some good references for solving other SMC problems. In theory, it can be generalized to compute lots of secure multiparty numerical computations.

References

1. Yao, A. C. Protocols for secure computations. In Proc. 23 rd IEEE Symposium on Foundations of Computer Science (FOCS' 82), 160 (1982).
2. Clifton, C., Kantarcioglu, M., Vaidya, J., Lin, X. \& Zhu, M. Y. Tools for Privacy-Preserving Distributed Data Mining. ACM SIGKDD Explorations Newsletter 4, 28-34 (2002).
3. Sanil, A. P., Karr, A. F., Lin, X. \& Reiter, J. P. Privacy preserving regression modeling via distributed computation. In Proc. the 2004 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 677-682 (2004).
4. Atallah, M., Bykova, M., Li, J., Frikken, K. \& Tophara, M. Private collaborative forecasting and benchmarking. In Proc. the 2004 ACM Workshop on Privacy in the Electronic Society, 103-114 (2004).
5. Masayuki, A. Non-interactive and optimally resilient distributed multiplication (Special Section on Discrete Mathematics and Its Applications). IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E83A, 598-605 (2000).
6. Ronald, C., Ivan, D. \& Robbert, D. H. Atomic Secure Multi-party Multiplication with Low Communication. In Proc. Advances in Cryptology-EUROCRYPT 2007. LNCS 4515, 329-346 (2007).
7. Peter, L. Secure Distributed Multiplication of Two Polynomially Shared Values: Enhancing the Efficiency of the Protocol. In Proc. 3 rd International Conference on Emerging Security Information, Systems and Technologies, 286-291 (2009).
8. Bennett, C. H. \& Brassard, G. Quantum Cryptography: Public Key Distribution and Coin Tossing. In Proc. IEEE International Conference on Computers, Systems, and Signal Processing, 175-179 (1984).
9. Lo, H. K. Insecurity of quantum secure computations. Phys. Rev. A 56, 1154-1162 (1997).
10. Colbeck, R. The impossibility of secure two-party classical computation. Phys. Rev. A 76, 062308 (2007).
11. Buhrman, H., Christandl, M. \& Schaffner, C. Complete Insecurity of Quantum Protocols for Classical Two-Party Computation. Phys. Rev. Lett. 109, 160501 (2012).
12. Crépeau, C., Gottesman, D. \& Smith, A. Secure multi-party quantum computation. In Proc. STOC'02 Proceedings of the thirty-fourth annual ACM symposium on Theory of Computing, 643-652 (2002).
13. Ben-or, M., Crépeau, C., Gottesman, D., Hassidim, A. \& Smith, A. Secure Multiparty Quantum Computation with (Only) a Strict Honest Majority. In Proc. FOCS'06, $47^{\text {th }}$ Annual IEEE Symposium on Foundations of Computer Science, 249-260 (2006).
14. Unruh, D. Universally Composable Quantum Multi-party Computation. In Proc. Advances in Cryptology - EUROCRYPT 2010, LNCS 6110, 486-505 (2010).
15. Du, J. Z., Chen, X. B., Wen, Q. X. \& Zhu, F. C. Secure multiparty quantum summation. Acta Phys Sin-Ch Ed 56, 6214-6219 (2007).
16. Chen, X. B., Xu, G., Yang, Y. X. \& Wen, Q. Y. An Efficient Protocol for the Secure Multi-party Quantum Summation. Int J Theor Phys. 49, 2793-2804 (2010).
17. Diao, Z. J., Huang, C. F. \& Wang, K. Quantum Counting: Algorithm and Error Distribution. Acta Appl Math. 118, 147-159 (2012).
18. Barnum, H., Crépeau, C., Gottesman, D., Smith, A. \& Tapp, A. Authentication of quantum messages. In Proc. 43 rd Annual IEEE Symposium on Foundations of Computer Science (FOCS), 449-458 (2002).
19. Aharonov, D., Ben-Or, M. \& Eban, E. Interactive proofs for quantum computations. In Proc. Innovations in Computer Science, arxiv. org/abs/0810.5375 (2008).
20. Yu, K. F., Yang, C. W., Liao, C. H. \& Hwang, T. Authenticated semi-quantum key distribution protocol using Bell states. Quantum Inf. Process. 13, 1457-1465 (2014).
21. Guan, D. J., Wang, Y. J. \& Zhuang, E. S. A practical protocol for three-party authenticated quantum key distribution. Quantum Inf. Process. 13, 2355-2374 (2014)
22. Farouk, A., Zakaria, M., Megahed, A. \& Omara, F.A. A generalized architecture of quantum secure direct communication for N disjointed users with authentication. Sci. Rep 5, 16080 (2015).
23. Shi, R. H., Mu, Y., Zhong, H., Cui, J. \& Zhang, S. Two Quantum Protocols for Oblivious Set-member Decision Problem. Sci. Rep 5, 15914 (2015).

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos 61173187, 61173188 and 11301002), the Ministry of Education institution of higher learning doctor discipline and scientific research fund aids a project financially (No. 20133401110004), Natural Science Foundation of Anhui Province (No. 1408085QF107), and the 211 Project of Anhui University (Nos 33190187 and 17110099).

Author Contributions

Study conception, design, and writing of the manuscript: R.-H.S. and Y.M. Analysis and discussion: H.Z., J.C. and S.Z. All authors reviewed the manuscript.

Additional Information

Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Shi, R.- et al. Secure Multiparty Quantum Computation for Summation and Multiplication. Sci. Rep. 6, 19655; doi: 10.1038/srep19655 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

[^0]: ${ }^{1}$ School of Computer Science and Technology, Anhui University, Hefei City, 230601, China. ${ }^{2}$ Centre for Computer and Information Security Research, School of Computing and Information Technology, University of Wollongong, Wollongong NSW 2522, Australia. Correspondence and requests for materials should be addressed to R.H.S. (email: shirh@ahu.edu.cn)

