19,458 research outputs found

    Optimal state estimation for cavity optomechanical systems

    Full text link
    We demonstrate optimal state estimation for a cavity optomechanical system through Kalman filtering. By taking into account nontrivial experimental noise sources, such as colored laser noise and spurious mechanical modes, we implement a realistic state-space model. This allows us to obtain the conditional system state, i.e., conditioned on previous measurements, with minimal least-square estimation error. We apply this method for estimating the mechanical state, as well as optomechanical correlations both in the weak and strong coupling regime. The application of the Kalman filter is an important next step for achieving real-time optimal (classical and quantum) control of cavity optomechanical systems.Comment: replaced with published version, 5+12 page

    Feedback control of quantum state reduction

    Get PDF
    Feedback control of quantum mechanical systems must take into account the probabilistic nature of quantum measurement. We formulate quantum feedback control as a problem of stochastic nonlinear control by considering separately a quantum filtering problem and a state feedback control problem for the filter. We explore the use of stochastic Lyapunov techniques for the design of feedback controllers for quantum spin systems and demonstrate the possibility of stabilizing one outcome of a quantum measurement with unit probability

    Testing quantum mechanics: a statistical approach

    Full text link
    As experiments continue to push the quantum-classical boundary using increasingly complex dynamical systems, the interpretation of experimental data becomes more and more challenging: when the observations are noisy, indirect, and limited, how can we be sure that we are observing quantum behavior? This tutorial highlights some of the difficulties in such experimental tests of quantum mechanics, using optomechanics as the central example, and discusses how the issues can be resolved using techniques from statistics and insights from quantum information theory.Comment: v1: 2 pages; v2: invited tutorial for Quantum Measurements and Quantum Metrology, substantial expansion of v1, 19 pages; v3: accepted; v4: corrected some errors, publishe

    Quantum Measurement Theory in Gravitational-Wave Detectors

    Get PDF
    The fast progress in improving the sensitivity of the gravitational-wave (GW) detectors, we all have witnessed in the recent years, has propelled the scientific community to the point, when quantum behaviour of such immense measurement devices as kilometer-long interferometers starts to matter. The time, when their sensitivity will be mainly limited by the quantum noise of light is round the corner, and finding the ways to reduce it will become a necessity. Therefore, the primary goal we pursued in this review was to familiarize a broad spectrum of readers with the theory of quantum measurements in the very form it finds application in the area of gravitational-wave detection. We focus on how quantum noise arises in gravitational-wave interferometers and what limitations it imposes on the achievable sensitivity. We start from the very basic concepts and gradually advance to the general linear quantum measurement theory and its application to the calculation of quantum noise in the contemporary and planned interferometric detectors of gravitational radiation of the first and second generation. Special attention is paid to the concept of Standard Quantum Limit and the methods of its surmounting.Comment: 147 pages, 46 figures, 1 table. Published in Living Reviews in Relativit

    Euclidean Quantum Mechanics and Universal Nonlinear Filtering

    Full text link
    An important problem in applied science is the continuous nonlinear filtering problem, i.e., the estimation of a Langevin state that is observed indirectly. In this paper, it is shown that Euclidean quantum mechanics is closely related to the continuous nonlinear filtering problem. The key is the configuration space Feynman path integral representation of the fundamental solution of a Fokker-Planck type of equation termed the Yau Equation of continuous-continuous filtering. A corollary is the equivalence between nonlinear filtering problem and a time-varying Schr\"odinger equation.Comment: 19 pages, LaTeX, interdisciplinar

    A discrete invitation to quantum filtering and feedback control

    Get PDF
    The engineering and control of devices at the quantum-mechanical level--such as those consisting of small numbers of atoms and photons--is a delicate business. The fundamental uncertainty that is inherently present at this scale manifests itself in the unavoidable presence of noise, making this a novel field of application for stochastic estimation and control theory. In this expository paper we demonstrate estimation and feedback control of quantum mechanical systems in what is essentially a noncommutative version of the binomial model that is popular in mathematical finance. The model is extremely rich and allows a full development of the theory, while remaining completely within the setting of finite-dimensional Hilbert spaces (thus avoiding the technical complications of the continuous theory). We introduce discretized models of an atom in interaction with the electromagnetic field, obtain filtering equations for photon counting and homodyne detection, and solve a stochastic control problem using dynamic programming and Lyapunov function methods.Comment: 76 pages, 12 figures. A PDF file with high resolution figures can be found at http://minty.caltech.edu/papers.ph
    corecore