232 research outputs found

    Quantum and non-signalling graph isomorphisms

    Get PDF
    We introduce the (G,H)-isomorphism game, a new two-player non-local game that classical players can win with certainty iff the graphs G and H are isomorphic. We then define quantum and non-signalling isomorphisms by considering perfect quantum and non-signalling strategies for this game. We prove that non-signalling isomorphism coincides with fractional isomorphism, giving the latter an operational interpretation. We show that quantum isomorphism is equivalent to the feasibility of two polynomial systems obtained by relaxing standard integer programs for graph isomorphism to Hermitian variables. Finally, we provide a reduction from linear binary constraint system games to isomorphism games. This reduction provides examples of quantum isomorphic graphs that are not isomorphic, implies that the tensor product and commuting operator frameworks result in different notions of quantum isomorphism, and proves that both relations are undecidable.Peer ReviewedPostprint (author's final draft

    A categorical semantics for causal structure

    Get PDF
    We present a categorical construction for modelling causal structures within a general class of process theories that include the theory of classical probabilistic processes as well as quantum theory. Unlike prior constructions within categorical quantum mechanics, the objects of this theory encode fine-grained causal relationships between subsystems and give a new method for expressing and deriving consequences for a broad class of causal structures. We show that this framework enables one to define families of processes which are consistent with arbitrary acyclic causal orderings. In particular, one can define one-way signalling (a.k.a. semi-causal) processes, non-signalling processes, and quantum nn-combs. Furthermore, our framework is general enough to accommodate recently-proposed generalisations of classical and quantum theory where processes only need to have a fixed causal ordering locally, but globally allow indefinite causal ordering. To illustrate this point, we show that certain processes of this kind, such as the quantum switch, the process matrices of Oreshkov, Costa, and Brukner, and a classical three-party example due to Baumeler, Feix, and Wolf are all instances of a certain family of processes we refer to as SOCn\textrm{SOC}_n in the appropriate category of higher-order causal processes. After defining these families of causal structures within our framework, we give derivations of their operational behaviour using simple, diagrammatic axioms.Comment: Extended version of a LICS 2017 paper with the same titl

    Quantum hypergraph homomorphisms and non-local games

    Full text link
    Using the simulation paradigm in information theory, we define notions of quantum hypergraph homomorphisms and quantum hypergraph isomorphisms, and show that they constitute partial orders and equivalence relations, respectively. Specialising to the case where the underlying hypergraphs arise from non-local games, we define notions of quantum non-local game homomorphisms and quantum non-local game isomorphisms, and show that games, isomorphic with respect to a given correlation type, have equal values and asymptotic values relative to this type. We examine a new class of no-signalling correlations, which witness the existence of non-local game homomorphisms, and characterise them in terms of states on tensor products of canonical operator systems. We define jointly synchronous correlations and show that they correspond to traces on the tensor product of the canonical C*-algebras associated with the game parties

    Causal graph dynamics

    Full text link
    We extend the theory of Cellular Automata to arbitrary, time-varying graphs. In other words we formalize, and prove theorems about, the intuitive idea of a labelled graph which evolves in time - but under the natural constraint that information can only ever be transmitted at a bounded speed, with respect to the distance given by the graph. The notion of translation-invariance is also generalized. The definition we provide for these "causal graph dynamics" is simple and axiomatic. The theorems we provide also show that it is robust. For instance, causal graph dynamics are stable under composition and under restriction to radius one. In the finite case some fundamental facts of Cellular Automata theory carry through: causal graph dynamics admit a characterization as continuous functions, and they are stable under inversion. The provided examples suggest a wide range of applications of this mathematical object, from complex systems science to theoretical physics. KEYWORDS: Dynamical networks, Boolean networks, Generative networks automata, Cayley cellular automata, Graph Automata, Graph rewriting automata, Parallel graph transformations, Amalgamated graph transformations, Time-varying graphs, Regge calculus, Local, No-signalling.Comment: 25 pages, 9 figures, LaTeX, v2: Minor presentation improvements, v3: Typos corrected, figure adde

    Nonlocal Games and Quantum Permutation Groups

    Get PDF
    We present a strong connection between quantum information and quantum permutation groups. Specifically, we define a notion of quantum isomorphisms of graphs based on quantum automorphisms from the theory of quantum groups, and then show that this is equivalent to the previously defined notion of quantum isomorphism corresponding to perfect quantum strategies to the isomorphism game. Moreover, we show that two connected graphs XX and YY are quantum isomorphic if and only if there exists xV(X)x \in V(X) and yV(Y)y \in V(Y) that are in the same orbit of the quantum automorphism group of the disjoint union of XX and YY. This connection links quantum groups to the more concrete notion of nonlocal games and physically observable quantum behaviours. We exploit this link by using ideas and results from quantum information in order to prove new results about quantum automorphism groups, and about quantum permutation groups more generally. In particular, we show that asymptotically almost surely all graphs have trivial quantum automorphism group. Furthermore, we use examples of quantum isomorphic graphs from previous work to construct an infinite family of graphs which are quantum vertex transitive but fail to be vertex transitive, answering a question from the quantum group literature. Our main tool for proving these results is the introduction of orbits and orbitals (orbits on ordered pairs) of quantum permutation groups. We show that the orbitals of a quantum permutation group form a coherent configuration/algebra, a notion from the field of algebraic graph theory. We then prove that the elements of this quantum orbital algebra are exactly the matrices that commute with the magic unitary defining the quantum group. We furthermore show that quantum isomorphic graphs admit an isomorphism of their quantum orbital algebras which maps the adjacency matrix of one graph to that of the other.Comment: 39 page

    A comonadic view of simulation and quantum resources

    Full text link
    We study simulation and quantum resources in the setting of the sheaf-theoretic approach to contextuality and non-locality. Resources are viewed behaviourally, as empirical models. In earlier work, a notion of morphism for these empirical models was proposed and studied. We generalize and simplify the earlier approach, by starting with a very simple notion of morphism, and then extending it to a more useful one by passing to a co-Kleisli category with respect to a comonad of measurement protocols. We show that these morphisms capture notions of simulation between empirical models obtained via `free' operations in a resource theory of contextuality, including the type of classical control used in measurement-based quantum computation schemes.Comment: To appear in Proceedings of LiCS 201
    corecore