27,841 research outputs found

    Quantum Proofs for Classical Theorems

    Get PDF
    Alongside the development of quantum algorithms and quantum complexity theory in recent years, quantum techniques have also proved instrumental in obtaining results in diverse classical (non-quantum) areas, such as coding theory, communication complexity, and polynomial approximations. In this paper we survey these results and the quantum toolbox they use

    Gromov-Witten invariants on Grassmannians

    Full text link
    We prove that any three-point genus zero Gromov-Witten invariant on a type A Grassmannian is equal to a classical intersection number on a two-step flag variety. We also give symplectic and orthogonal analogues of this result; in these cases the two-step flag variety is replaced by a sub-maximal isotropic Grassmannian. Our theorems are applied, in type A, to formulate a conjectural quantum Littlewood-Richardson rule, and in the other classical Lie types, to obtain new proofs of the main structure theorems for the quantum cohomology of Lagrangian and orthogonal Grassmannians.Comment: 15 pages, LaTeX2e, to appear in J. Amer. Math. So

    A Resource Framework for Quantum Shannon Theory

    Full text link
    Quantum Shannon theory is loosely defined as a collection of coding theorems, such as classical and quantum source compression, noisy channel coding theorems, entanglement distillation, etc., which characterize asymptotic properties of quantum and classical channels and states. In this paper we advocate a unified approach to an important class of problems in quantum Shannon theory, consisting of those that are bipartite, unidirectional and memoryless. We formalize two principles that have long been tacitly understood. First, we describe how the Church of the larger Hilbert space allows us to move flexibly between states, channels, ensembles and their purifications. Second, we introduce finite and asymptotic (quantum) information processing resources as the basic objects of quantum Shannon theory and recast the protocols used in direct coding theorems as inequalities between resources. We develop the rules of a resource calculus which allows us to manipulate and combine resource inequalities. This framework simplifies many coding theorem proofs and provides structural insights into the logical dependencies among coding theorems. We review the above-mentioned basic coding results and show how a subset of them can be unified into a family of related resource inequalities. Finally, we use this family to find optimal trade-off curves for all protocols involving one noisy quantum resource and two noiseless ones.Comment: 60 page

    Exponentially Accurate Semiclassical Dynamics: Propagation, Localization, Ehrenfest Times, Scattering and More General States

    Full text link
    We prove six theorems concerning exponentially accurate semiclassical quantum mechanics. Two of these theorems are known results, but have new proofs. Under appropriate hypotheses, they conclude that the exact and approximate dynamics of an initially localized wave packet agree up to exponentially small errors in \hbar for finite times and for Ehrenfest times. Two other theorems state that for such times the wave packets are localized near a classical orbit up to exponentially small errors. The fifth theorem deals with infinite times and states an exponentially accurate scattering result. The sixth theorem provides extensions of the other five by allowing more general initial conditions

    Commuting Quantum Circuits with Few Outputs are Unlikely to be Classically Simulatable

    Full text link
    We study the classical simulatability of commuting quantum circuits with n input qubits and O(log n) output qubits, where a quantum circuit is classically simulatable if its output probability distribution can be sampled up to an exponentially small additive error in classical polynomial time. First, we show that there exists a commuting quantum circuit that is not classically simulatable unless the polynomial hierarchy collapses to the third level. This is the first formal evidence that a commuting quantum circuit is not classically simulatable even when the number of output qubits is exponentially small. Then, we consider a generalized version of the circuit and clarify the condition under which it is classically simulatable. Lastly, we apply the argument for the above evidence to Clifford circuits in a similar setting and provide evidence that such a circuit augmented by a depth-1 non-Clifford layer is not classically simulatable. These results reveal subtle differences between quantum and classical computation.Comment: 19 pages, 6 figures; v2: Theorems 1 and 3 improved, proofs modifie

    Strong converse theorems using R\'enyi entropies

    Full text link
    We use a R\'enyi entropy method to prove strong converse theorems for certain information-theoretic tasks which involve local operations and quantum or classical communication between two parties. These include state redistribution, coherent state merging, quantum state splitting, measurement compression with quantum side information, randomness extraction against quantum side information, and data compression with quantum side information. The method we employ in proving these results extends ideas developed by Sharma [arXiv:1404.5940], which he used to give a new proof of the strong converse theorem for state merging. For state redistribution, we prove the strong converse property for the boundary of the entire achievable rate region in the (e,q)(e,q)-plane, where ee and qq denote the entanglement cost and quantum communication cost, respectively. In the case of measurement compression with quantum side information, we prove a strong converse theorem for the classical communication cost, which is a new result extending the previously known weak converse. For the remaining tasks, we provide new proofs for strong converse theorems previously established using smooth entropies. For each task, we obtain the strong converse theorem from explicit bounds on the figure of merit of the task in terms of a R\'enyi generalization of the optimal rate. Hence, we identify candidates for the strong converse exponents for each task discussed in this paper. To prove our results, we establish various new entropic inequalities, which might be of independent interest. These involve conditional entropies and mutual information derived from the sandwiched R\'enyi divergence. In particular, we obtain novel bounds relating these quantities, as well as the R\'enyi conditional mutual information, to the fidelity of two quantum states.Comment: 40 pages, 5 figures; v4: Accepted for publication in Journal of Mathematical Physic
    corecore