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Abstract: Alongside the development of quantum algorithms and quantum complex-
ity theory in recent years, quantum techniques have also proved instrumental in obtaining
results in diverse classical (non-quantum) areas, such as coding theory, communication
complexity, and polynomial approximations. In this paper we survey these results and the
quantum toolbox they use.
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1 Introduction

1.1 Surprising proof methods

Mathematics is full of surprising proofs, and these form a large part of the beauty and fascination of the
subject to its practitioners. A feature of many such proofs is that they introduce objects or concepts from
beyond the “milieu” in which the problem was originally posed.

As an example from high-school math, the easiest way to prove real-valued identities like

cos(x+ y) = cosxcosy− sinxsiny

is to go to complex numbers: using the identity eix = cosx+ isinx we have

ei(x+y) = eixeiy = (cosx+ isinx)(cosy+ isiny) = cosxcosy− sinxsiny+ i(cosxsiny+ sinxcosy).

Taking the real parts of the two sides gives our identity.
Another example is the probabilistic method, associated with Paul Erdős and excellently covered in

the book of Alon and Spencer [13]. The idea here is to prove the existence of an object with a specific
desirable property P by choosing such an object at random, and showing that it satisfies P with positive
probability. Here is a simple example: suppose we want to prove that every undirected graph G = (V,E)
with |E|= m edges has a cut (a partition V =V1∪V2 of its vertex set) with at least m/2 edges crossing
the cut.
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Proof: Choose the cut at random, by including each vertex i in V1 with probability 1/2
(independently of the other vertices). For each fixed edge (i, j), the probability that it crosses
is the probability that i and j end up in different sets, which is exactly 1/2. Hence by linearity
of expectation, the expected number of crossing edges for our cut is exactly m/2. But then
there must exist a specific cut with at least m/2 crossing edges.

The statement of the theorem has nothing to do with probability, yet probabilistic methods allow us to
give a very simple proof. Alon and Spencer [13] give many other examples of this phenomenon, in areas
ranging from graph theory and analysis to combinatorics and computer science.

Two special cases of the probabilistic method deserve mention here. First, one can combine the
language of probability with that of information theory [40]. For instance, if a random variable X is
uniformly distributed over some finite set S then its Shannon entropy H(X) =−∑x Pr[X = x] logPr[X =
x] is exactly log |S|. Hence upper (resp. lower) bounds on this entropy give upper (resp. lower) bounds
on the size of S. Information theory offers many tools that allow us to manipulate and bound entropies in
sophisticated yet intuitive ways. The following example is due to Peter Frankl. In theoretical computer
science one often has to bound sums of binomials coefficients like

s =
αn

∑
i=0

(
n
i

)
,

say for some α ≤ 1/2. This s is exactly the size of the set S ⊆ {0,1}n of strings of Hamming weight
at most αn. Choose X = (X1, . . . ,Xn) uniformly at random from S. Then, individually, each Xi is a bit
whose probability of being 1 is at most α , and hence H(Xi) ≤ H(α) = −α logα− (1−α) log(1−α).
Using the sub-additivity of entropy we obtain an essentially tight upper bound on the size of S:

logs = log |S|= H(X)≤
n

∑
i=1

H(Xi)≤ nH(α).

A second, related but more algorithmic approach is the so-called “incompressibility method,” which
reasons about the properties of randomly chosen objects and is based on the theory of Kolmogorov com-
plexity [84, Chapter 6]. In this method we consider “compression schemes,” that is, injective mappings
C from binary strings to other binary strings. The basic observation is that for any C and n, most strings
of length n map to strings of length nearly n or more, simply because there aren’t enough short descrip-
tions to go round. Thus, if we can design some compression scheme that represents n-bit objects that do
not have some desirable property P with much fewer than n bits, it follows that most n-bit strings have
property P.

Of course one can argue that applications of the probabilistic method are all just counting arguments
disguised in the language of probability, and hence probabilistic arguments are not essential to the proof.
In a narrow sense this is indeed correct. However, viewing things probabilistically gives a rather differ-
ent perspective and allows us to use sophisticated tools to bound probabilities, such as large deviation
inequalities and the Lovász Local Lemma, as exemplified in [13]. While such tools may be viewed as
elaborate ways of doing a counting argument, the point is that we might never think of using them if
the argument were phrased in terms of counting instead of probability. Similarly, arguments based on
information theory or incompressibility are essentially “just” counting arguments, but the information-
theoretic and algorithmic perspective leads to proofs we would not easily discover otherwise.
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1.2 A quantum method?

The purpose of this paper is to survey another family of surprising proofs that use the language and
techniques of quantum computing to prove theorems whose statement has nothing to do with quantum
computing.

Since the mid-1990s, especially since Peter Shor’s 1994 quantum algorithm for factoring large inte-
gers [117], quantum computing has grown to become a prominent and promising area at the intersection
of computer science and physics. Quantum computers could yield fundamental improvements in al-
gorithms, communication protocols, and cryptography. This promise, however, depends on physical
realization, and despite the best efforts of experimental physicists we are still very far from building
large-scale quantum computers.

In contrast, using the language and tools of quantum computing as a proof tool is something we
can do today. Here, quantum mechanics is purely a mathematical framework, and our proofs remain
valid even if large-scale quantum computers are never built (or worse, if quantum mechanics turns out
to be wrong as a description of reality). This paper describes a number of recent results of this type.
As with the probabilistic method, these applications range over many areas, from error-correcting codes
and complexity theory to purely mathematical questions about polynomial approximations and matrix
theory. We hesitate to say that they represent a “quantum method,” since the set of tools is far less
developed than the probabilistic method. However, we feel that these quantum tools will yield more
surprises in the future, and have the potential to grow into a full-fledged proof method.

As we will see below, the language of quantum computing is really just a shorthand for linear
algebra: states are vectors and operations are matrices. Accordingly, one could argue that we don’t
need the quantum language at all. Indeed, one can always translate the proofs given below back to
the language of linear algebra. What’s more, there is already an extensive tradition of elegant proofs
in combinatorics, geometry, and other areas, which employ linear algebra (often over finite fields) in
surprising ways. For two surveys of this linear algebra method, see the books by Babai and Frank [18]
and Jukna [66, Part III]. However, we feel the proofs we survey here are of a different nature than those
produced by the classical linear algebra method. Just as thinking probabilistically suggests strategies that
might not occur when taking the counting perspective, couching a problem in the language of quantum
algorithms and quantum information gives us access to intuitions and tools that we would otherwise
likely overlook or consider unnatural. While certainly not a cure-all, for some types of problems the
quantum perspective is a very useful one and there is no reason to restrict oneself to the language of
linear algebra.

1.3 Outline

The survey is organized as follows. We begin in Section 2 with a succinct introduction to the quantum
model and the properties used in our applications. Most of those applications can be conveniently
classified in two broad categories. First, there are applications that are close in spirit to the classical
information-theory method. They use quantum information theory to bound the dimension of a quantum
system, analogously to how classical information theory can be used to bound the size of a set. In
Section 3 we give three results of this type. Other applications use quantum algorithms as a tool to
define polynomials with desired properties. In Section 4 we give a number of applications of this type.
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Finally, there are a number of applications of quantum tools that do not fit well in the previous two
categories; some of these are classical results more indirectly “inspired” by earlier quantum results.
These are described in Section 5.

2 The quantum toolbox

The goal of this survey is to show how quantum techniques can be used to analyze non-quantum ques-
tions. Of course, this requires at least some knowledge of quantum mechanics, which might appear
discouraging to those without a physics background. However, the amount of quantum mechanics one
needs is surprisingly small and easily explained in terms of basic linear algebra. The first thing we would
like to convey is that at the basic level, quantum mechanics is not a full-fledged theory of the universe
(containing claims about which objects and forces “really exist”), but rather a framework in which to
describe physical systems and processes they undergo. Within this framework we can posit the existence
of basic units of quantum information (“qubits”) and ways of transforming them, just as classical theo-
retical computer science begins by positing the existence of bits and the ability to perform basic logical
operations on them. While we hope this is reassuring, it is nevertheless true that the quantum-mechanical
framework has strange and novel aspects—which, of course, is what makes it worth studying in the first
place.

In this section we give a bare-bones introduction to the essentials of quantum mechanics and quan-
tum computing. (A more general framework for quantum mechanics is given in the Appendix, but we
will not need it for the results we describe.) We then give some specific useful results from quantum
information theory and quantum algorithms.

2.1 The quantum model

At a very general level level, any physical system is associated with a Hilbert space, and a state of
that system is described by an element of that Hilbert space. The Hilbert space corresponding to the
combination of two physical systems is the tensor product of their respective Hilbert spaces.

Pure states: For our purposes, a pure quantum state (often just called a state) is a unit column vector in
a d-dimensional complex vector space Cd . Quantum physics typically used the Dirac notation, writing
a column vector v as |v〉, while 〈v| denotes the row vector that is the conjugate transpose of v.

The simplest nontrivial example is the case of a 2-dimensional system, called a qubit. We identify
the two possible values of a classical bit with the two vectors in the standard orthonormal basis for this
space:

|0〉=
(

1
0

)
, |1〉=

(
0
1

)
.

In general, the state of a qubit can be a superposition (i. e., linear combination) of these two values:

|φ〉= α0|0〉+α1|1〉=
(

α0
α1

)
,
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where the complex numbers are called amplitudes; α0 is the amplitude of basis state |0〉, and α1 is the
amplitude of |1〉. Since a state is a unit vector, we have |α0|2 + |α1|2 = 1.

A 2-qubit space is obtained by taking the tensor product of two 1-qubit spaces. This is most easily
explained by giving the four basis vectors of the tensor space:

|00〉= |0〉⊗|0〉=


1
0
0
0

 , |01〉= |0〉⊗|1〉=


0
1
0
0

 , |10〉= |1〉⊗|0〉=


0
0
1
0

 , |01〉= |1〉⊗|1〉=


0
0
0
1

 .

These correspond to the four possible 2-bit strings. More generally, we can form 2n-dimensional spaces
this way whose basis states correspond to the 2n different n-bit strings.

We also sometimes use d-dimensional spaces without such a qubit-structure. Here we usually denote
the d standard orthonormal basis vectors with |1〉, . . . , |d〉, where |i〉i = 1 and |i〉 j = 0 for all j 6= i. For a
vector |φ〉= ∑

d
i=1 αi|i〉 in this space, 〈φ |= ∑

d
i=1 α∗i 〈i| is the row vector that is the conjugate transpose of

|φ〉. The Dirac notation allows us for instance to conveniently write the standard inner product between
states |φ〉 and |ψ〉 as 〈φ | · |ψ〉= 〈φ |ψ〉. This inner product induces the Euclidean norm (or “length”) of
vectors: ‖v‖=

√
〈v|v〉.

One can also take tensor products in this space: if |φ〉= ∑i∈[m] αi|i〉 and |ψ〉= ∑ j∈[n] β j| j〉, then their
tensor product |φ〉⊗ |ψ〉 ∈ Cmn is

|φ〉⊗ |ψ〉= ∑
i∈[m], j∈[n]

αiβ j|i, j〉,

where [n] denotes the set {1, . . . ,n} and the vectors |i, j〉= |i〉⊗ | j〉 form an orthonormal basis for Cmn.
This tensor product of states |φ〉 and |ψ〉 is also often denoted simply as |φ〉|ψ〉. Note that this new state
is a unit vector, as it should be.

Not every pure state in Cmn can be expressed as a tensor product in this way; those that cannot are
called entangled. The best-known entangled state is the 2-qubit EPR-pair 1√

2
(|00〉+ |11〉), named after

the authors of the paper [44]. When two separated parties each hold part of such an entangled state, we
talk about shared entanglement between them.

Transformations: There are two things one can do with a quantum state: transform it or measure
it. Actually, as we will see, measurements can transform the measured states as well; however, we
reserve the word “transformation” to describe non-measurement change processes, which we describe
next. Quantum mechanics allows only linear transformations on states. Since these linear transfor-
mations must map unit vectors to unit vectors, we require them to be norm-preserving (equivalently,
inner-product-preserving). Norm-preserving linear maps are called unitary. Equivalently, these are the
d× d matrices U whose conjugate transpose U∗ equals the inverse U−1 (physicists typically write U†

instead of U∗). For our purposes, unitary transformations are exactly the transformations that quantum
mechanics allows us to apply to states. We will frequently define transformations by giving their action
on the standard basis, with the understanding that such a definition extends (uniquely) to a linear map
on the entire space.
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Possibly the most important 1-qubit unitary is the Hadamard transform:

1√
2

(
1 1
1 −1

)
. (2.1)

This maps basis state |0〉 to 1√
2
(|0〉+ |1〉) and |1〉 to 1√

2
(|0〉− |1〉).

Two other types of unitaries deserve special mention. First, for any function f : {0,1}n→ {0,1}n,
define a transformation U f mapping the joint computational basis state |x〉|y〉 (where x,y ∈ {0,1}n) to
|x〉|y⊕ f (x)〉, where ‘⊕’ denotes bitwise addition (mod 2) of n-bit vectors. Note that U f is a permuta-
tion on the orthonormal basis states, and therefore unitary. With such transformations we can simulate
classical computations. Next, fix a unitary transformation U on a k-qubit system, and consider the
(k+1)-qubit unitary transformation V defined by

V (|0〉|ψ〉) = |0〉|ψ〉, V (|1〉|ψ〉) = |1〉U |ψ〉. (2.2)

This V is called a controlled-U operation, and the first qubit is called the control qubit. Intuitively, our
quantum computer uses the first qubit to “decide” whether or not to apply U to the last k qubits.

Finally, just as one can take the tensor product of quantum states in different registers, one can
take the tensor product of quantum operations (more generally, of matrices) acting on two registers. If
A = (ai j) is an m×m′ matrix and B is an n×n′ matrix, then their tensor product is the mn×m′n′ matrix

A⊗B =


a11B · · · a1m′B
a21B · · · a2m′B

. . .
am1B · · · amm′B

 .

Note that the tensor product of two vectors is the special case where m′ = n′ = 1, and that A⊗B is
unitary if A and B are. We may regard A⊗B as the simultaneous application of A to the first register and
B to the second register. For example, the n-fold tensor product H⊗n denotes the unitary that applies the
one-qubit Hadamard gate to each qubit of an n-qubit register. This maps any basis state |x〉 to H⊗n|x〉=

1√
2n ∑y∈{0,1}n(−1)x·y|y〉 (and vice versa, since H happens to be its own inverse). Here x · y = ∑

n
i=1 xiyi

denotes the inner product of bit strings.

Measurement: Quantum mechanics is distinctive for having measurement built-in as a fundamental
notion, at least in most formulations. A measurement is a way to obtain information about the measured
quantum system. It takes as input a quantum state and outputs classical data (the “measurement out-
come”), along with a new quantum state. It is an inherently probabilistic process that affects the state
being measured. Various types of measurements on systems are possible. In the simplest kind, known
as measurement in the computational basis, we measure a pure state

|φ〉=
d

∑
i=1

αi|i〉

and see the basis state |i〉with probability pi equal to the squared amplitude |αi|2 (or more accurately, the
squared modulus of the amplitude—it is often convenient to just call this the squared amplitude). Since
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the state is a unit vector these outcome probabilities sum to 1, as they should. After the measurement,
the state has changed to the observed basis state |i〉. Note that if we apply the measurement now a second
time, we will observe the same |i〉 with certainty—as if the first measurement forced the quantum state
to “make up its mind.”

A more general type of measurement is the projective measurement, a.k.a. Von Neumann measure-
ment. A projective measurement with k outcomes is specified by d×d projector matrices P1, . . . ,Pk that
form an orthogonal decomposition of the d-dimensional space. That is, PiPj = δi, jPi, and ∑

k
i=1 Pi = I is

the identity operator on the whole space. Equivalently, there exist orthonormal vectors v1, . . . ,vd and a
partition S1∪·· ·∪Sk of {1, . . . ,d} such that Pi =∑ j∈Si |v j〉〈v j| for all i∈ [k]. With some abuse of notation
we can identity Pi with the subspace onto which it projects, and write the orthogonal decomposition of
the complete space as

Cd = P1⊕P2⊕·· ·⊕Pk.

Correspondingly, we can write |φ〉 as the sum of its components in the k subspaces:

|φ〉= P1|φ〉+P2|φ〉+ · · ·+Pk|φ〉.

A measurement probabilistically picks out one of these components: the probability of outcome i is
‖Pi|φ〉‖2, and if we got outcome i then the state changes to the new unit vector Pi|φ〉/‖Pi|φ〉‖ (which is
the component of |φ〉 in the i-th subspace, renormalized).

An important special case of projective measurements is measurement relative to the orthonormal
basis {|vi〉}, where each projector Pi projects onto a 1-dimensional subspace spanned by the unit vector
|vi〉. In this case we have k = d and Pi = |vi〉〈vi|. A measurement in the computational basis corresponds
to the case where Pi = |i〉〈i|. If |φ〉 = ∑i αi|i〉 then we indeed recover the squared amplitude: pi =
‖Pi|φ〉‖2 = |αi|2.

One can also apply a measurement to part of a state, for instance to the first register of a 2-register
quantum system. Formally, we just specify a k-outcome projective measurement for the first register,
and then tensor each of the k projectors with the identity operator on the second register to obtain a
k-outcome measurement on the joint space.

Looking back at our definitions, we observe that if two quantum states |φ〉, |ψ〉 satisfy α|φ〉 = |ψ〉
for some scalar α (necessarily of unit norm), then for any system of projectors {Pi}, ‖Pi|φ〉‖2 = ‖Pi|ψ〉‖2

and so measuring |φ〉 with {Pi} yields the same distribution as measuring |ψ〉. More is true: if we make
any sequence of transformations and measurements to the two states, the sequence of measurement
outcomes we see are identically distributed. Thus the two states are indistinguishable, and we generally
regard them as the same state.

Quantum-classical analogy: For the uninitiated, these high-dimensional complex vectors and unitary
transformations may seem baffling. One helpful point of view is the analogy with classical random
processes. In the classical world, the evolution of a probabilistic automaton whose state consists of
n bits can be modeled as a sequence of 2n-dimensional vectors π1,π2, . . .. Each π i is a probability
distribution on {0,1}n, where π t

x gives the probability that the automaton is in state x if measured at
time t (π1 is the starting state). The evolution from time t to t + 1 is describable by a matrix equation
π t+1 = Mtπ

t , where Mt is a 2n× 2n stochastic matrix, that is, a matrix that always maps probability
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vectors to probability vectors. The final outcome of the computation is obtained by sampling from the
last probability distribution. The quantum case is similar: an n-qubit state is a 2n-dimensional vector,
but now it is a vector of complex numbers whose squares sum to 1. A transformation corresponds to
a 2n× 2n matrix, but now it is a matrix that preserves the sum of squares of the entries. Finally, a
measurement in the computational basis obtaines the final outcome by sampling from the distribution
given by the squares of the entries of the vector.

2.2 Quantum information and its limitations

Quantum information theory studies the quantum generalizations of familiar notions from classical in-
formation theory such as Shannon entropy, mutual information, channel capacities, etc. In Section 3
we give several examples where quantum information theory is used to say something about various
non-quantum systems. The quantum information-theoretic results we need all have the same flavor:
they say that a low-dimensional quantum state (i. e., a small number of qubits) cannot contain too much
accessible information.

Holevo’s Theorem: The mother of all such results is Holevo’s theorem from 1973 [59], which predates
the area of quantum computation by many years. Its proper technical statement is in terms of a quantum
generalization of mutual information, but the following consequence of it (derived by Cleve et al. [39])
about two communicating parties, suffices for our purposes.

Theorem 2.1 (Holevo, CDNT). If Alice wants to send n bits of information to Bob via a quantum
channel (i. e., by exchanging quantum systems), and they do not share an entangled state, then they have
to exchange at least n qubits. If they are allowed to share unlimited prior entanglement, then Alice has
to send at least n/2 qubits to Bob, no matter how many qubits Bob sends to Alice.

This theorem is slightly imprecisely stated here, but the intuition is very clear: the first part of
the theorem says that if we encode some classical random variable X in an m-qubit state1, then no
measurement on the quantum state can give more than m bits of information about X . More precisely:
the classical mutual information between X and the classical measurement outcome M on the m-qubit
system, is at most m. If we encoded the classical information in a m-bit system instead of a m-qubit
system this would be a trivial statement, but the proof of Holevo’s theorem is quite non-trivial. Thus
we see that a m-qubit state, despite somehow “containing” 2m complex amplitudes, is no better than m
classical bits for the purpose of storing information (this is in the absence of prior entanglement; if Alice
and Bob do share entanglement, then m qubits are no better than 2m classical bits).

Low-dimensional encodings: Here we provide a “poor man’s version” of Holevo’s theorem due to
Nayak [96, Theorem 2.4.2], which has a simple proof and often suffices for applications. Suppose we
have a classical random variable X , uniformly distributed over [N] = {1, . . . ,N}. Let x 7→ |φx〉 be some
encoding of [N], where |φx〉 is a pure state in a d-dimensional space. Let P1, . . . ,PN be the measurement

1Via an encoding map x 7→ |φx〉; we generally use capital letters like X to denote random variables, lower case like x to
denote specific values.
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operators applied for decoding; these sum to the d-dimensional identity operator. Then the probability
of correct decoding in case X = x, is

px = ‖Px|φx〉‖2 ≤ Tr(Px).

The sum of these success probabilities is at most

N

∑
x=1

px ≤
N

∑
x=1

Tr(Px) = Tr

(
N

∑
x=1

Px

)
= Tr(I) = d. (2.3)

In other words, if we are encoding one of N classical values in a d-dimensional quantum state, then
any measurement to decode the encoded classical value has average success probability at most d/N
(uniformly averaged over all N values that we can encode).2 This is optimal. For example, if we encode
n bits into m qubits, we will have N = 2n, d = 2m, and the average success probability of decoding is at
most 2m/2n.

Random access codes: The previous two results dealt with the situation where we encoded a classical
random variable X in some quantum system, and would like to recover the original value X by an
appropriate measurement on that quantum system. However, suppose X = X1 . . .Xn is a string of n
bits, uniformly distributed and encoded by a map x 7→ |φx〉, and it suffices for us if we are able to
decode individual bits Xi from this with some probability p > 1/2. More precisely, for each i ∈ [n] there
should exist a measurement {Mi, I−Mi} allowing us to recover xi: for each x ∈ {0,1}n we should have
‖Mi|φx〉‖2 ≥ p if xi = 1 and ‖Mi|φx〉‖2 ≤ 1− p if xi = 0. An encoding satisfying this is called a quantum
random access code, since it allows us to choose which bit of X we would like to access. Note that the
measurement to recover xi can change the state |φx〉, so generally we may not be able to decode more
than one bit of x.

An encoding that allows us to recover an n-bit string requires about n qubits by Holevo. Random
access codes only allow us to recover each of the n bits. Can they be much shorter? In small cases they
can be: for instance, one can encode two classical bits into one qubit, in such a way that each of the two
bits can be recovered with success probability 85% from that qubit [17]. However, Nayak [96] proved
that asymptotically quantum random access codes cannot be much shorter than classical (improving
upon an m = Ω(n/ logn) lower bound from [17]).

Theorem 2.2 (Nayak). Let x 7→ |φx〉 be a quantum random access encoding of n-bit strings into m-
qubit states such that, for each i ∈ [n], we can decode Xi from |φX〉 with success probability p (over
a uniform choice of X and the measurement randomness). Then m ≥ (1−H(p))n, where H(p) =
−p log p− (1− p) log(1− p) is the binary entropy function.

2For projective measurements the statement is somewhat trivial, since in a d-dimensional space one can have at most d
non-zero orthogonal projectors. However, the same proof works for the most general states and measurements that quantum
mechanics allows: so-called mixed states (probability distributions over pure states) and POVMs (which are measurements
where the operators P1, . . . ,Pk need not be projectors, but can be general positive semidefinite matrices summing to I); see the
Appendix for these notions.
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In fact the success probabilities need not be the same for all Xi; if we can decode each Xi with
success probability pi ≥ 1/2, then the lower bound on the number of qubits is m ≥ ∑

n
i=1(1−H(pi)).

The intuition of the proof is quite simple: since the quantum state allows us to predict the bit Xi with
probability pi, it reduces the “uncertainty” about Xi from 1 bit to H(pi) bits. Hence it contains at least
1−H(pi) bits of information about Xi. Since all n Xi’s are independent, the state has to contain at
least ∑

n
i=1(1−H(pi)) bits about X in total. For more technical details see [96] or Appendix B of [70].

The lower bound on m can be achieved up to an additive O(logn) term, even by classical probabilistic
encodings.

2.3 Quantum query algorithms

Different models for quantum algorithms exist. Most relevant for our purposes are the quantum query
algorithms, which may be viewed as the quantum version of classical decision trees. We will give a
basic introduction here, referring to [34] for more details. The model and results of this section will not
be needed until Section 4, and the reader might want to defer reading this until they get there.

The query model: In this model, the goal is to compute some function f : An→ B on a given input
x ∈ An. The simplest and most common case is A = B = {0,1}. The distinguishing feature of the query
model is the way x is accessed: x is not given explicitly, but is stored in a random access memory, and we
are being charged unit cost for each query that we make to this memory. Informally, a query asks for and
receives the i-th element xi of the input. Formally, we model a query unitarily as the following 2-register
quantum operation Ox, where the first register is n-dimensional and the second is |A|-dimensional:

Ox : |i,b〉 7→ |i,b+ xi〉,

where for simplicity we identify A with the additive group Z|A|, i. e., addition is modulo |A|. In particular,
|i,0〉 7→ |i,xi〉. This only states what Ox does on basis states, but by linearity determines the full unitary.
Note that a quantum algorithm can apply Ox to a superposition of basis states; this gives us a kind of
simultaneous access to multiple input variables xi.

A T -query quantum algorithm starts in a fixed state, say the all-0 state |0 . . .0〉, and then interleaves
fixed unitary transformations U0,U1, . . . ,UT with queries. It is possible that the algorithm’s fixed uni-
taries act on a workspace-register, in addition to the two registers on which Ox acts. In this case we
implicitly extend Ox by tensoring it with the identity operation on this extra register. Hence the final
state of the algorithm can be written as the following matrix-vector product:

UT OxUT−1Ox · · ·OxU1OxU0|0 . . .0〉.

This state depends on the input x only via the T queries. The output of the algorithm is obtained by a
measurement of the final state. For instance, if the output is Boolean, the algorithm could just measure
the final state in the computational basis and output the first bit of the result.

The query complexity of some function f is now defined to be the minimal number of queries needed
for an algorithm that outputs the correct value f (x) for every x in the domain of f (with error probability
at most some fixed value ε). We just count queries to measure the complexity of the algorithm, while the
intermediate fixed unitaries are treated as costless. In many cases, including all the ones in this paper, the
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overall computation time of quantum query algorithms (as measured by the total number of elementary
gates, say) is not much bigger than the query complexity. This justifies analyzing the latter as a proxy
for the former.

Examples of quantum query algorithms: Here we list a number of quantum query algorithms that
we will need in later sections. All of these algorithms outperform the best classical algorithms for the
given task.

• Grover’s algorithm [56] searches for a “solution” in a given n-bit input x, i. e., an index i such
that xi = 1. The algorithm uses O(

√
n) queries, and if there is at least one solution in x then it finds

one with probability at least 1/2. Classical algorithms for this task, including randomized ones,
require Ω(n) queries.

• ε-error search: If we want to reduce the error probability in Grover’s search algorithm to some
small ε , then Θ(

√
n log(1/ε)) queries are necessary and sufficient [30]. Note that this is more

efficient than the standard amplification that repeats Grover’s algorithm O(log(1/ε)) times.

• Exact search: If we know there are exactly t solutions in our space (i. e., |x| = t), then a variant
of Grover’s algorithm finds a solution with probability 1 using O(

√
n/t) queries [29].

• Finding all solutions: If we know an upper bound t on the number of solutions (i. e., |x| ≤ t),
then we can find all of them with probability 1 using ∑

t
i=1 O(

√
n/i) = O(

√
tn) queries [55].

• Quantum counting: The algorithm Count(x,T ) of [29] approximates the total number of solu-
tions. It takes as input an x ∈ {0,1}n, makes T quantum queries to x, and outputs an estimate
t̃ ∈ [0,n] to t = |x|, the Hamming weight of x. For j ≥ 1 we have the following concentration
bound, implicit in [29]: Pr[|t̃− t| ≥ jn/T ] = O(1/ j). For example, using T = O(

√
n) quantum

queries we can, with high probability, approximate t up to additive error of O(
√

n).

• Search on bounded-error inputs: Suppose the bits x1, . . . ,xn are not given by a perfect oracle Ox,
but by an imperfect one: Ox : |i,b,0〉 7→

√
1− εi|i,b⊕ xi,wi〉+

√
εi|i,b⊕ xi,w′i〉, where we know

ε , we know that εi ≤ ε for each x and i, but we do not know the actual values of the εi (which
may depend on x), or of the “workspace” states |wi〉 and |w′i〉. We call this an ε-bounded-error
quantum oracle. This situation arises, for instance, when each bit xi is itself computed by some
bounded-error quantum algorithm. Given the ability to apply Ox as well as its inverse O−1

x , we
can still find a solution with high probability using O(

√
n) queries [61]. If the unknown number

of solutions is t, then we can still find one with high probability using O(
√

n/t) queries.

From quantum query algorithms to polynomials An n-variate multilinear polynomial p is a func-
tion p : Cn→ C that can be written as

p(x1, . . . ,xn) = ∑
S⊆[n]

aS ∏
i∈S

xi,

for some complex numbers aS. The degree of p is deg(p) =max{|S| : aS 6= 0}. It is well known (and easy
to show) that every function f : {0,1}n→C has a unique representation as such a polynomial; deg( f ) is
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defined as the degree of that polynomial. For example, the 2-bit AND function is p(x1,x2) = x1x2, and
the 2-bit Parity function is p(x1,x2) = x1 + x2−2x1x2. Both polynomials have degree 2.

For the purposes of this survey, the crucial property of efficient quantum query algorithms is that the
amplitudes of their final state are low-degree polynomials of x [49, 23]. More precisely:

Lemma 2.3. Consider a T -query algorithm with input x ∈ {0,1}n acting on an m-qubit space. Then its
final state can be written as

∑
z∈{0,1}m

αz(x)|z〉,

where each αz is a multilinear polynomial in x of degree at most T .

Proof. The proof is by induction on T . The base case (T = 0) trivially holds: the algorithm’s starting
state is independent of x, so its amplitudes are polynomials of degree 0.

For the induction step, note that a fixed linear transformation does not increase the degree of the
amplitudes (the new amplitudes are linear combinations of the old amplitudes), while a query to x
corresponds to the following map:

αi,0,w|i,0,w〉+αi,1,w′ |i,1,w′〉 7→ ((1− xi)αi,0,w + xiαi,1,w′)|i,0,w〉+(xiαi,0,w +(1− xi)αi,1,w′)|i,1,w′〉,

which increases the degree of the amplitudes by at most 1: if αi,0,w and αi,1,w′ are polynomials in x of
degree at most d, then the new amplitudes are polynomials of degree at most d + 1. Since our inputs
are 0/1-valued, we can drop higher degrees and assume without loss of generality that the resulting
polynomials are multilinear.

If we measure the first qubit of the final state and output the resulting bit, then the probability of
output 1 is given by ∑z∈{0,1}m,s.t.z1=1 |αz|2, which is a real-valued polynomial of x of degree at most 2T .
This is true more generally:

Corollary 2.4. Consider a T -query algorithm with input x ∈ {0,1}n. Then the probability of a specific
output is a multilinear polynomial in x of degree at most 2T .

This connection between quantum query algorithms and polynomials has mostly been used as a tool
for lower bounds [23, 4, 1, 73]: if one can show that every polynomial that approximates a function
f : {0,1}n→ {0,1} has degree at least d, then every quantum algorithm computing f with small error
must use at least d/2 queries. We give one example in this spirit in Section 4.5, in which a version of the
polynomial method yielded a breakthrough in classical lower bounds. However, most of the applications
in this survey (in Section 4) work in the other direction: they view quantum algorithms as a means for
constructing polynomials with certain desirable properties.

3 Using quantum information theory

The results in this section all use quantum information-theoretic bounds to say something about non-
quantum objects.
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3.1 Communication lower bound for inner product

The first surprising application of quantum information theory to another area was in communication
complexity. The basic scenario in this area models 2-party distributed computation: Alice receives
some n-bit input x, Bob receives some n-bit input y, and together they want to compute some Boolean
function f (x,y), the value of which Bob is required to output (with high probability, in the case of
bounded-error protocols). The resource to be minimized is the amount of communication between Alice
and Bob, whence the name communication complexity. This model was introduced by Yao [130], and
a good overview of (non-quantum) results and applications may be found in the book of Kushilevitz
and Nisan [76]. The area is interesting in its own right as a basic complexity measure for distributed
computing, but has also found many applications as a tool for lower bounds in areas like data structures,
Turing machine complexity, etc. The quantum generalization is quite straightforward: now Alice and
Bob can communicate qubits, and possibly start with an entangled state. See [124] for more details and
a survey of results.

One of the most studied communication complexity problems is the inner product problem, where
the function to be computed is the inner product of x and y modulo 2, i. e., IP(x,y) = ∑

n
i=1 xiyi mod 2.

Clearly, n bits of communication suffice for any function—Alice can just send x. However, IP is a good
example where one can prove that nearly n bits of communication is also necessary. The usual proof
for this result is based on the combinatorial notion of “discrepancy”, but below we give an alternative
quantum-based proof due to Cleve et al. [39].

Intuitively, it seems that unless Alice gives Bob a lot of information about x, he will not be able
to guess the value of IP(x,y). However, in general it is hard to directly lower bound communication
complexity by information, since we really require Bob to produce only one bit of output.3 The very
elegant proof of [39] uses quantum effects to get around this problem: it converts a protocol (quantum
or classical) that computes IP into a quantum protocol that communicates x from Alice to Bob. Holevo’s
theorem then easily lower bounds the amount of communication of the latter protocol by the length
of x. This goes as follows. Suppose Alice and Bob have some protocol for IP, say it uses c bits of
communication. Suppose for simplicity it has no error probability. By running the protocol, putting the
answer bit x · y into a phase, and then reversing the protocol to set its workspace back to its initial value,
we can implement the following unitary mapping

|x〉|y〉 7→ |x〉(−1)x·y|y〉.

Note that this protocol now uses 2c bits of communication: c going from Alice to Bob and c going from
Bob to Alice. The trick is that we can run this unitary on a superposition of inputs, at a cost of 2c qubits
of communication. Suppose Alice starts with an arbitrary n-bit state |x〉 and Bob starts with the uniform
superposition 1√

2n ∑y∈{0,1}n |y〉. If they apply the above unitary, the final state becomes

|x〉 1√
2n ∑

y∈{0,1}n

(−1)x·y|y〉.

3Still, there are also classical techniques to turn this information-theoretic intuition into communication complexity lower
bounds [36, 65, 21, 22, 64, 83].
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If Bob now applies a Hadamard transform to each of his n qubits, then he obtains the basis state |x〉,
so Alice’s n classical bits have been communicated to Bob. Theorem 2.1 now implies that Alice must
have sent at least n/2 qubits to Bob (even if Alice and Bob started with unlimited shared entanglement).
Hence c≥ n/2.

With some more technical complication, the same idea gives a linear lower bound on the commu-
nication of bounded-error protocols for IP. Nayak and Salzman [97] later obtained optimal bounds for
quantum protocols computing IP.

3.2 Lower bounds on locally decodable codes

The development of error-correcting codes is one of the success stories of science in the second half
of the 20th century. Such codes are eminently practical, and are widely used to protect information
stored on discs, communication over channels, etc. From a theoretical perspective, there exist codes
that are nearly optimal in a number of different respects simultaneously: they have constant rate, can
protect against a constant noise-rate, and have linear-time encoding and decoding procedures. We refer
to Trevisan’s survey [119] for a complexity-oriented discussion of codes and their applications.

One drawback of ordinary error-correcting codes is that we cannot efficiently decode small parts of
the encoded information. If we want to learn, say, the first bit of the encoded message then we usually
still need to decode the whole encoded string. This is relevant in situations where we have encoded a
very large string (say, a library of books, or a large database), but are only interested in recovering small
pieces of it at any given time. Dividing the data into small blocks and encoding each block separately
will not work: small chunks will be efficiently decodable but not error-correcting, since a tiny fraction
of well-placed noise could wipe out the encoding of one chunk completely. There exist, however, error-
correcting codes that are locally decodable, in the sense that we can efficiently recover individual bits of
the encoded string. These are defined as follows [68]:

Definition 3.1. C : {0,1}n→ {0,1}m is a (q,δ ,ε)-locally decodable code (LDC) if there is a classical
randomized decoding algorithm A such that

1. A makes at most q queries to an m-bit string y (non-adaptively).

2. For all x and i, and all y ∈ {0,1}m with Hamming distance d(C(x),y) ≤ δm we have Pr[Ay(i) =
xi]≥ 1/2+ ε .

The notation Ay(i) reflects that the decoder A has two different types of input. On the one hand
there is the (possibly corrupted) codeword y, to which the decoder has oracle access and from which it
can read at most q bits of its choice. On the other hand there is the index i of the bit that needs to be
recovered, which is known fully to the decoder.

The main question about LDCs is the tradeoff between the codelength m and the number of queries q
(which is a proxy for the decoding-time). This tradeoff is still not very well understood. We list the best
known constructions here. On one extreme, regular error-correcting codes are (m,δ ,1/2)-LDCs, so one
can have LDCs of linear length if one allows a linear number of queries. Reed-Muller codes allow one to
construct LDCs with m= poly(n) and q= polylog(n) [37]. For constant q, the best constructions are due

to Efremenko [42], improving upon Yekhanin [131]: for q = 2r one can get codelength roughly 22(logn)1/r

,
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and for q = 3 one gets roughly 22
√

logn
. For q = 2 there is the Hadamard code: given x ∈ {0,1}n, define

a codeword of length m = 2n by writing down the bits x · z mod 2, for all z ∈ {0,1}n. One can decode
xi with 2 queries as follows: choose z ∈ {0,1}n uniformly at random and query the (possibly corrupted)
codeword at indices z and z⊕ei, where the latter denotes the string obtained from z by flipping its i-th bit.
Individually, each of these two indices is uniformly distributed. Hence for each of them, the probability
that the returned bit of is corrupted is at most δ . By the union bound, with probability at least 1− 2δ ,
both queries return the uncorrupted values. Adding these two bits mod 2 gives the correct answer:

C(x)z⊕C(x)z⊕ei = (x · z)⊕ (x · (z⊕ ei)) = x · ei = xi.

Thus the Hadamard code is a (2,δ ,1/2− 2δ )-LDC of exponential length. Can we still do something
if we can make only one query instead of two? It turns out that 1-query LDCs do not exist once n is
sufficiently large [68].

The only superpolynomial lower bound known on the length of LDCs is for the case of 2 queries:
there one needs an exponential codelength and hence the Hadamard code is essentially optimal. This
was first shown for linear 2-query LDCs by Goldreich et al. [53] via a combinatorial argument, and then
for general LDCs by Kerenidis and de Wolf [70] via a quantum argument.4 The easiest way to present
this argument is to assume the following fact, which states a kind of “normal form” for the decoder.

Fact 3.2 (Katz & Trevisan [68] + folklore). For every (q,δ ,ε)-LDC C : {0,1}n→{0,1}m, and for each
i ∈ [n], there exists a set Mi of Ω(δεm/q2) disjoint tuples, each of at most q indices from [m], and a bit
ai,t for each tuple t ∈Mi, such that the following holds:

Pr
x∈{0,1}n

[
xi = ai,t ⊕∑

j∈t
C(x) j

]
≥ 1/2+Ω(ε/2q), (3.1)

where the probability is taken uniformly over x. Hence to decode xi from C(x), the decoder can just
query the indices in a randomly chosen tuple t from Mi, outputting the sum of those q bits and ai,t .

Note that the above decoder for the Hadamard code is already of this form, with Mi = {(z,z⊕ ei)}. We
omit the proof of Fact 3.2. It uses purely classical ideas and is not hard.

Now suppose C : {0,1}n→{0,1}m is a (2,δ ,ε)-LDC. We want to show that the codelength m must
be exponentially large in n. Our strategy is to show that the following m-dimensional quantum encoding
is in fact a quantum random access code for x, with some success probability p > 1/2:

x 7→ |φx〉=
1√
m

m

∑
j=1

(−1)C(x) j | j〉.

Theorem 2.2 then implies that the number of qubits of this state (which is dlogme) is at least (1−
H(p))n = Ω(n), and we are done.

4The best known lower bounds for general LDCs with q > 2 queries are only slightly superlinear. Those bounds, and also
the best known lower bounds for 2-server Private Information Retrieval schemes, are based on similar quantum ideas [70, 122,
128]. The best known lower bound for 3-query LDCs is m = Ω(n2/ logn) [128]; for linear 3-query LDCs, a slightly better
lower bound of m = Ω(n2) is known [129].
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Suppose we want to recover xi from |φx〉. We turn each Mi from Fact 3.2 into a measurement:
for each pair ( j,k) ∈ Mi form the projector Pjk = | j〉〈 j|+ |k〉〈k|, and let Prest = ∑ j 6∈∪t∈Mi t

| j〉〈 j| be the
projector on the remaining indices. These |Mi|+1 projectors sum to the m-dimensional identity matrix,
so they form a valid projective measurement. Applying this to |φx〉 gives outcome ( j,k) with probability
2/m for each ( j,k) ∈Mi, and outcome “rest” with probability ρ = 1−Ω(δε). In the latter case we just
output a fair coin flip as our guess for xi. In the former case the state has collapsed to the following
useful superposition:

1√
2

(
(−1)C(x) j | j〉+(−1)C(x)k |k〉

)
=

(−1)C(x) j

√
2

(
| j〉+(−1)C(x) j⊕C(x)k |k〉

)
Doing a 2-outcome measurement in the basis 1√

2
(| j〉± |k〉) now gives us the value C(x) j⊕C(x)k with

probability 1. By Eq. (3.1), if we add the bit ai,( j,k) to this, we get xi with probability at least 1/2+Ω(ε).
The success probability of recovering xi, averaged over all x, is

p≥ 1
2

ρ +

(
1
2
+Ω(ε)

)
(1−ρ) =

1
2
+Ω(δε

2).

Now 1−H(1/2+η) = Θ(η2) for η ∈ [0,1/2], so after applying Theorem 2.2 we obtain the following:

Theorem 3.3 (Kerenidis & de Wolf). If C : {0,1}n→{0,1}m is a (2,δ ,ε)-locally decodable code, then
m = 2Ω(δ 2ε4n).

The dependence on δ and ε in the exponent can be improved to δε2 [70]. This is still the only
superpolynomial lower bound known for LDCs. An alternative proof was found later [26], using an
extension of the Bonami-Beckner hypercontractive inequality. However, even that proof still follows the
outline of the above quantum-inspired proof, albeit in linear-algebraic language.

3.3 Rigidity of Hadamard matrices

In this section we describe an application of quantum information theory to matrix theory from [125].
Suppose we have some n×n matrix M, whose rank we want to reduce by changing a few entries. The
rigidity of M measures the minimal number of entries we need to change in order to reduce its rank to a
given value r. This notion can be studied over any field, but we will focus here on R and C. Formally:

Definition 3.4. The rigidity of a matrix M is the following function:

RM(r) = min{d(M,M̃) : rank(M̃)≤ r},

where d(M,M̃) counts the Hamming distance, i. e., the number of coordinates where M and M̃ differ.
The bounded rigidity of M is defined as

RM(r,θ) = min{d(M,M̃) : rank(M̃)≤ r,max
x,y
|Mx,y− M̃x,y| ≤ θ}.
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Roughly speaking, high rigidity means that M’s rank is robust: changes in few entries will not
change the rank much. Rigidity was defined by Valiant [121, Section 6] in the 1970s with a view to
proving circuit lower bounds. In particular, he showed that an explicit n× n matrix M with RM(εn) ≥
n1+δ for ε,δ > 0 would imply that log-depth arithmetic circuits (with linear gates) that compute the
linear map M : Rn → Rn need superlinear circuit size. This motivates trying to prove lower bounds
on rigidity for specific matrices. Clearly, RM(r) ≥ n− r for every full-rank matrix M, since reducing
the rank by 1 requires changing at least one entry. This bound is optimal for the identity matrix, but
usually far from tight. Valiant showed that most matrices have rigidity (n− r)2, but finding an explicit
matrix with high rigidity has been open for decades.5 Similarly, finding explicit matrices with strong
lower bounds on bounded rigidity would have applications to areas like communication complexity and
learning theory [88, 90].

A very natural and widely studied class of candidates for such a high-rigidity matrix are the Hadamard
matrices. A Hadamard matrix is an n× n matrix M with entries +1 and −1 that is orthogonal (so
MT M = nI). Ignoring normalization, the k-fold tensor product of the matrix from Eq. (2.1) is a Hadamard
matrix with n = 2k. (It is a longstanding conjecture that Hadamard matrices exist if, and only if, n
equals 2 or a multiple of 4.)

Suppose we have a matrix M̃ differing from the Hadamard matrix M in R positions such that
rank(M̃) ≤ r. The goal in proving high rigidity is to lower-bound R in terms of n and r. Alon [12]
proved R = Ω(n2/r2). This was later reproved by Lokam [88] using spectral methods. Kashin and
Razborov [67] improved this to R≥ n2/256r. De Wolf [125] later rederived this bound using a quantum
argument, with a better constant. We present this argument next.

The quantum idea: The idea is to view the rows of an n× n matrix as a quantum encoding of [n].
The rows of a Hadamard matrix M, after normalization by a factor 1/

√
n, form an orthonormal set of

n-dimensional quantum states |Mi〉. If Alice sends Bob |Mi〉 and Bob measures the received state with
the projectors Pj = |M j〉〈M j|, then he learns i with probability 1, since |〈Mi|M j〉|2 = δi, j. Of course,
nothing spectactular has been achieved by this—we just transmitted logn bits of information by sending
logn qubits.

Now suppose that instead of M we have some rank-r n× n matrix M̃ that is “close” to M (we are
deliberately being vague about “close” here, since two different instantiations of the same idea apply
to the two versions of rigidity). Then we can still use the quantum states |M̃i〉 that correspond to its
normalized rows. Alice now sends the normalized i-th row of M̃ to Bob. Crucially, she can do this by
means of an r-dimensional quantum state, as follows. Let |v1〉, . . . , |vr〉 be an orthonormal basis for the
row space of M̃. In order to transmit the normalized i-th row |M̃i〉= ∑

r
j=1 α j|v j〉, Alice sends ∑

r
j=1 α j| j〉

and Bob applies a unitary that maps | j〉 7→ |v j〉 to obtain |M̃i〉. He measures this with the projectors {Pj}.
Then his probability of getting the correct outcome i is

pi = |〈Mi|M̃i〉|2.

The “closer” M̃ is to M, the higher these pi’s are. But Eq. (2.3) in Section 2.2 tells us that the sum of

5Lokam [89] recently found an explicit n×n matrix with near-maximal rigidity; unfortunately his matrix has fairly large,
irrational entries, and is not sufficiently explicit for Valiant’s purposes.
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the pi’s lower-bounds the dimension r of the quantum system. Accordingly, the “closer” M̃ is to M, the
higher its rank has to be. This is exactly the tradeoff that rigidity tries to measure.

This quantum approach allows us to quite easily derive Kashin and Razborov’s [67] bound on rigid-
ity, with a better constant.

Theorem 3.5 (de Wolf, improving Kashin & Razborov). Let M be an n×n Hadamard matrix. If r≤ n/2,
then RM(r)≥ n2/4r.

Note that if r ≥ n/2 then RM(r) ≤ n, at least for symmetric Hadamard matrices such as H⊗k: then
M’s eigenvalues are all ±

√
n, so we can reduce its rank to n/2 or less by adding or subtracting the

diagonal matrix
√

nI. Hence a superlinear lower bound on RM(r) cannot be proved for r ≥ n/2.

Proof. Consider a rank-r matrix M̃ differing from M in R = RM(r) entries. By averaging, there exists
a set of a = 2r rows of M̃ with a total number of at most aR/n errors (i. e., changes compared to M).
Now consider the submatrix A of M̃ consisting of those a rows and the b≥ n−aR/n columns that have
no errors in those a rows. If b = 0 then R ≥ n2/2r and we are done, so we can assume A is nonempty.
This A is error-free, hence a submatrix of M itself. We now use the quantum idea to prove the following
claim (originally proved by Lokam using linear algebra, see the end of this section):

Claim 3.6 (Lokam). Every a×b submatrix A of n×n Hadamard matrix M has rank r ≥ ab/n.

Proof. Obtain the rank-r matrix M̃ from M by setting all entries outside of A to 0. Consider the a
quantum states |M̃i〉 corresponding to the nonempty rows; they have normalization factor 1/

√
b. Alice

tries to communicate a value i ∈ [a] to Bob by sending |M̃i〉. For each such i, Bob’s probability of
successfully decoding i is pi = |〈Mi|M̃i〉|2 = |b/

√
bn|2 = b/n. The states |M̃i〉 are all contained in an

r-dimensional space, so Eq. (2.3) implies ∑
a
i=1 pi ≤ r. Combining both bounds concludes the proof.

Hence we get r = rank(M̃)≥ rank(A)≥ ab
n
≥ a(n−aR/n)

n
. Rearranging gives the theorem.

Applying the quantum idea in a different way allows us to also analyze bounded rigidity:

Theorem 3.7 (Lokam, Kashin & Razborov, de Wolf). Let M be an n×n Hadamard matrix and θ > 0.

Then RM(r,θ)≥ n2(n− r)
2θn+ r(θ 2 +2θ)

.

Proof. Consider a rank-r matrix M̃ differing from M in R = RM(r,θ) entries, with each entry M̃i j dif-
fering from Mi j by at most θ . As before, define quantum states corresponding to its rows: |M̃i〉 =
ci ∑

n
j=1 M̃i, j| j〉, where ci = 1/

√
∑ j |M̃i, j|2 is a normalizing constant. Note that

∑
j
|M̃i, j|2 ≤ (n−d(Mi,M̃i))+d(Mi,M̃i)(1+θ)2 = n+d(Mi,M̃i)(θ

2 +2θ),

where d(·, ·) measures Hamming distance. Alice again sends |M̃i〉 to Bob to communicate the value
i ∈ [a]. Bob’s success probability pi is now

pi = |〈Mi|M̃i〉|2 ≥
c2

i

n
(n−θd(Mi,M̃i))

2 ≥ c2
i (n−2θd(Mi,M̃i))≥

n−2θd(Mi,M̃i)

n+d(Mi,M̃i)(θ 2 +2θ)
.
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Observe that our lower bound on pi is a convex function of the Hamming distance d(Mi,M̃i). Also,
E[d(Mi,M̃i)] = R/n over a uniform choice of i. Therefore by Jensen’s inequality we obtain the lower
bound for the average success probability p when i is uniform: p≥ n−2θR/n

n+R(θ 2+2θ)/n . Now Eq. (2.3) implies
p≤ r/n. Combining and rearranging gives the theorem.

For θ ≥ n/r we obtain the second result of Kashin and Razborov [67]: RM(r,θ) = Ω(n2(n− r)/rθ
2).

If θ ≤ n/r we get an earlier result of Lokam [88]: RM(r,θ) = Ω(n(n− r)/θ).

Did we need quantum tools for this? Apart from Claim 3.6 the proof of Theorem 3.5 is fully clas-
sical, and that claim itself can quite easily be proved using linear algebra, as was done originally by
Lokam [88, Corollary 2.2]. Let σ1(A), . . . ,σr(A) be the singular values of rank-r submatrix A. Since
M is an orthogonal matrix we have MT M = nI, so all M’s singular values equal

√
n. The matrix A is a

submatrix of M, so all σi(A) are at most
√

n. Using the Frobenius norm, we obtain the claim:

ab = ‖A‖2
F =

r

∑
i=1

σi(A)2 ≤ rn.

Furthermore, after reading a first version of [125], Midrijanis [94] came up with an even simpler proof of
the n2/4r bound on rigidity for the special case of 2k×2k Hadamard matrices that are the k-fold tensor
product of the 2×2 Hadamard matrix.

In view of these simple non-quantum proofs, one might argue that the quantum approach is an
overkill here. However, the main point here was not to rederive more or less known bounds, but to
show how quantum tools provide a quite different perspective on the problem: we can view a rank-r
approximation of the Hadamard matrix as a way of encoding [n] in an r-dimensional quantum system;
quantum information-theoretic bounds such as Eq. (2.3) can then be invoked to obtain a tradeoff between
the rank r and the “quality” of the approximation. The same idea was used to prove Theorem 3.7, whose
proof cannot be so easily de-quantized. The hope is that this perspective may help in the future to settle
some of the longstanding open problems about rigidity.

4 Using the connection with polynomials

The results of this section are based on the connection explained at the end of Section 2.3: efficient
quantum query algorithms give rise to low-degree polynomials.

As a warm-up, we mention a recent application of this. A formula is a binary tree whose internal
nodes are AND and OR-gates, and each leaf is a Boolean input variable xi or its negation. The root of
the tree computes a Boolean function of the input bits in the obvious way. The size of the formula is its
number of leaves. O’Donnell and Servedio [99] conjectured that all formulas of size n have sign-degree
at most O(

√
n); the sign-degree is the minimal degree among all n-variate polynomials that are positive

if, and only if, the formula is 1. Their conjecture implies, by known results, that the class of formulas is
learnable in the PAC model in time 2n1/2+o(1)

.
Building on a quantum algorithm of Farhi et al. [45] that was inspired by physical notions from

scattering theory, Ambainis et al. [16] showed that for every formula there is a quantum algorithm that
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computes it using n1/2+o(1) queries. By Corollary 2.4, the acceptance probability of this algorithm is an
approximating polynomial for the formula, of degree n1/2+o(1). Hence that polynomial minus 1/2 is a
sign-representing polynomial for the formula, proving the conjecture of O’Donnell and Servedio up to
the o(1) in the exponent. Based on an improved O(

√
n log(n)/ log log(n))-query quantum algorithm by

Reichardt [108] and some additional analysis, Lee [80] subsequently improved this general upper bound
on the sign-degree of formulas to the optimal O(

√
n), fully proving the conjecture (in contrast to [16],

he really bounds sign-degree, not approximate degree).

4.1 ε-approximating polynomials for symmetric functions

Our next example comes from [126], and deals with the minimal degree of ε-approximating polynomials
for symmetric Boolean functions. A function f : {0,1}n→{0,1} is symmetric if its value only depends
on the Hamming weight |x| of its input x ∈ {0,1}n. Equivalently, f (x) = f (π(x)) for all x ∈ {0,1}n and
all permutations π ∈ Sn. Examples are OR, AND, Parity, and Majority.

For some specified approximation error ε , let degε( f ) denote the minimal degree among all n-variate
multilinear polynomials p satisfying |p(x)− f (x)| ≤ ε for all x ∈ {0,1}n. If one is interested in constant
error then one typically fixes ε = 1/3, since approximations with different constant errors can easily
be converted into each other. Paturi [100] tightly characterized the 1/3-error approximate degree: if
t ∈ (0,n/2] is the smallest integer such that f is constant for |x| ∈ {t, . . . ,n−t}, then deg1/3( f )=Θ(

√
tn).

Motivated by an application to the inclusion-exclusion principle of probability theory, Sherstov [114]
recently studied the dependence of the degree on the error ε . He proved the surprisingly clean result that
for all ε ∈ [2−n,1/3],

degε( f ) = Θ̃

(
deg1/3( f )+

√
n log(1/ε)

)
,

where the Θ̃ notation hides some logarithmic factors (note that the statement is false if ε � 2−n, since
clearly deg( f ) ≤ n for all f .) His upper bound on the degree is based on Chebyshev polynomials. De
Wolf [126] tightens this upper bound on the degree:

Theorem 4.1 (de Wolf, improving Sherstov). For every non-constant symmetric function f : {0,1}n→
{0,1} and ε ∈ [2−n,1/3]:

degε( f ) = O
(

deg1/3( f )+
√

n log(1/ε)
)
.

By the discussion at the end of Section 2.3, to prove Theorem 4.1 it suffices to give an ε-error quan-
tum algorithm for f that uses O(deg1/3( f )+

√
n log(1/ε)) queries. The probability that the algorithm

outputs 1 will be our ε-error polynomial. For example, the special case where f is the n-bit OR function
follows immediately from the O(

√
n log(1/ε))-query search algorithm with error probability ε that was

mentioned there.
Here is the algorithm for general symmetric f . It uses some of the algorithms listed in Section 2.3

as subroutines. Let t = t( f ) be as in Paturi’s result.

1. Use t−1 applications of exact Grover to try to find up to t−1 distinct solutions in x (remember that
a “solution” to the search problem is an index i such that xi = 1). Initially we run an exact Grover
assuming |x| = t− 1, we verify that the outcome is a solution at the expense of one more query,
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and then we “cross it out” to prevent finding the same solution again in subsequent searches.
Then we run another exact Grover assuming there are t − 2 solutions, etc. Overall, this costs
∑

t−1
i=1 O(

√
n/i) = O(

√
tn) = O(deg1/3( f )) queries.

2. Use ε/2-error Grover to try to find one more solution. This costs O(
√

n log(1/ε)) queries.

3. The same as step 1, but now looking for positions of 0s instead of 1s.

4. The same as step 2, but now looking for positions of 0s instead of 1s.

5. If step 2 did not find another 1, then we assume step 1 found all 1s (i. e., a complete description of
x), and we output the corresponding value of f .

Else, if step 4 did not find another 0, then we assume step 3 found all 0s, and we output the
corresponding value of f .

Otherwise, we assume |x| ∈ {t, . . . ,n− t} and output the corresponding value of f .

Clearly the query complexity of this algorithm is O(deg1/3( f )+
√

n log(1/ε)), so it remains to upper
bound its error probability. If |x| < t then step 1 finds all 1s with certainty and step 2 will not find
another 1 (since there aren’t any left after step 1), so in this case the error probability is 0. If |x|> n− t
then step 2 finds a 1 with probability at least 1− ε/2, step 3 finds all 0s with certainty, and step 4
does not find another 0 (again, because there are none left); hence in this case the error probability
is at most ε/2. Finally, if |x| ∈ {t, . . . ,n− t} then with probability at least 1− ε/2 step 2 will find
another 1, and with probability at least 1− ε/2 step 4 will find another 0. Thus with probability at least
1− ε we correctly conclude |x| ∈ {t, . . . ,n− t} and output the correct value of f . Note that the only
property of f used here is that f is constant on |x| ∈ {t, . . . ,n− t}; the algorithm still works for Boolean
functions f that are arbitrary (non-symmetric) when |x| 6∈ {t, . . . ,n− t}, with the same query complexity
O
(√

tn+
√

n log(1/ε)
)

.

4.2 Robust polynomials

In the previous section we saw how quantum query algorithms allow us to construct polynomials (of
essentially minimal degree) that ε-approximate symmetric Boolean functions. In this section we show
how to construct robust polynomial approximations. These are insensitive to small changes in their n
input variables. Let us first define more precisely what we mean:

Definition 4.2. Let p : Rn → R be an n-variate polynomial (not necessarily multilinear). Then p ε-
robustly approximates f : {0,1}n→ {0,1} if for every x ∈ {0,1}n and every z ∈ [0,1]n satisfying |zi−
xi| ≤ ε for all i ∈ [n], we have p(z) ∈ [0,1] and |p(z)− f (x)| ≤ ε .

Note that we do not restrict p to be multilinear, since the inputs we care about are no longer 0/1-
valued. The degree of p is its total degree. Note that we require both the zi’s and the value p(z) to be
in the interval [0,1]. This is just a matter of convenience, because it allows us to interpret these num-
bers as probabilities; using the interval [−ε,1+ ε] instead of [0,1] would give an essentially equivalent
definition.
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One advantage of the class of robust polynomials over the usual approximating polynomials, is that it
is closed under composition: plugging robust polynomials into a robust polynomial gives another robust
polynomial. For example, suppose a function f : {0,1}n1n2 → {0,1} is obtained by composing f1 :
{0,1}n1 → {0,1} with n1 independent copies of f2 : {0,1}n2 → {0,1} (for instance an AND-OR tree).
Then we can just compose an ε-robust polynomial for f1 of degree d1 with an ε-robust polynomial for f2
of degree d2, to obtain an ε-robust polynomial for f of degree d1d2. The errors “take care of themselves,”
in contrast to ordinary approximating polynomials, which may not compose in this fashion.6

How hard is it to construct robust polynomials? In particular, does their degree have to be much
larger than the usual approximate degree? A good example is the n-bit Parity function. If the n inputs
x1, . . . ,xn are 0/1-valued then the following polynomial represents Parity:7

p(x) =
1
2
− 1

2

n

∏
i=1

(1−2xi). (4.1)

This polynomial has degree n, and it is known that any ε-approximating polynomial for Parity needs
degree n as well. However, it is clear that this polynomial is not robust: if each xi = 0 is replaced by
zi = ε , then the resulting value p(z) is exponentially close to 1/2 rather than ε-close to the correct value
0. One way to make it robust is to individually “amplify” each input variable zi, such that if zi ∈ [0,ε]
then its amplified version is in, say, [0,1/100n] and if zi ∈ [1− ε,1] then its amplified version is in
[1−1/100n,1]. The following univariate polynomial of degree k does the trick:

a(y) = ∑
j>k/2

(
k
j

)
y j(1− y)k− j.

Note that this polynomial describes the probability that k coin flips, each with probability y of being 1,
have majority 1. By standard Chernoff bounds, if y ∈ [0,ε] then a(y) ∈ [0,exp(−Ω(k))] and if y ∈
[1− ε,1] then a(y) ∈ [1− exp(−Ω(k)),1]. Taking k = O(logn) and substituting a(zi) for xi in Eq. (4.1)
gives an ε-robust polynomial for Parity of degree Θ(n logn). Is this optimal? Since Parity crucially
depends on each of its n variables, and amplifying each zi to polynomially small error needs degree
Θ(logn), one might conjecture robust polynomials for Parity need degree Ω(n logn). Surprisingly, this
is not the case: there exist ε-robust polynomials for Parity of degree O(n). Even more surprisingly,
the only way we know how to construct such robust polynomials is via the connection with quantum
algorithms. Based on the quantum search algorithm for bounded-error inputs mentioned in Section 2.3,
Buhrman et al. [32] showed the following:

Theorem 4.3 (BNRW). There exists a quantum algorithm that makes O(n) queries to an ε-bounded-
error quantum oracle and outputs x1, . . . ,xn with probability at least 1− ε .

The constant in the O(·) depends on ε , but we will not write this dependence explicitly.

6Reichardt [109] showed recently that such a clean composition result also holds for the usual bounded-error quantum
query complexity, by going back and forth between quantum algorithms and span programs (which compose cleanly).

7If inputs and outputs were ±1-valued, the polynomial would just be the product of the n variables.
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Proof (sketch). The idea is to maintain an n-bit string x̃, initially all-0, and to look for differences be-
tween x̃ and x. Initially this number of differences is |x|. If there are t difference points (i. e., i ∈ [n]
where xi 6= x̃i), then the quantum search algorithm A with bounded-error inputs finds a difference point
i with high probability using O(

√
n/t) queries. We flip the i-th bit of x̃. If the search indeed yielded a

difference point, then this reduces the distance between x̃ and x by one. Once there are no differences
left, we have x̃ = x, which we can verify by one more run of A. If A only finds difference points, then
we would find all differences in total number of queries

|x|

∑
t=1

O(
√

n/t) = O(
√
|x|n).

The technical difficulty is that A errs (i. e., produces an output i where actually xi = x̃i) with constant
probability, and hence we sometimes increase rather than decrease the distance between x̃ and x. The
proof details in [32] show that the procedure is still expected to make progress, and with high probability
finds all differences after O(n) queries.8

This algorithm implies that we can compute, with O(n) queries and error probability ε , any Boolean
function f : {0,1}n → {0,1} on ε-bounded-error inputs: just compute x and output f (x). This is not
true for classical algorithms running on bounded-error inputs. In particular, classical algorithms that
compute Parity with such a noisy oracle need Θ(n logn) queries [46].

The above algorithm for f is “robust” in a very similar way as robust polynomials: its output is
hardly affected by small errors on its input bits. We now want to derive a robust polynomial from this
robust algorithm. However, Corollary 2.4 only deals with algorithms acting on the usual non-noisy type
of oracles. We circumvent this problem as follows. Pick a sufficiently large integer m, and fix error-
fractions εi ∈ [0,ε] that are multiples of 1/m. Convert an input x ∈ {0,1}n into X ∈ {0,1}nm = X1 . . .Xn,
where each Xi is m copies of xi but with an εi-fraction of errors (the errors can be placed arbitrarily
among the m copies of xi). Note that the following map is an ε-bounded-error oracle for x that can be
implemented by one query to X :

|i,b,0〉 7→ |i〉 1√
m

m

∑
j=1
|b⊕Xi j〉| j〉=

√
1− εi|i,b⊕ xi,wi〉+

√
εi|i,b⊕ xi,w′i〉

Now consider the algorithm that Theorem 4.3 provides for this oracle. This algorithm makes O(n)
queries to X , it is independent of the specific values of εi or the way the errors are distributed over Xi,
and it has success probability ≥ 1− ε as long as εi ≤ ε for each i ∈ [n]. Applying Corollary 2.4 to this
algorithm gives an nm-variate multilinear polynomial p in X of degree d = O(n). This p(X) lies in [0,1]
for every input X ∈ {0,1}nm (since it is a success probability), and has the property that p(X1, . . . ,Xn) is
ε-close to f (x1, . . . ,xn) whenever |Xi|/m is ε-close to xi for each i.

It remains to turn each block Xi of m Boolean variables into one real-valued variable zi. This can be
done by the method of symmetrization [95] as follows. Define a new polynomial p1 which averages p
over all permutations of the m bits in X1:

p1(X1, . . . ,Xn) =
1

m! ∑
π∈Sm

p(π(X1),X2, . . . ,Xm).

8The same idea would work with classical algorithms, but gives query complexity roughly ∑
|x|
t=1 n/t ∼ n ln |x|.
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Symmetrization replaces terms like X11 · · ·X1t by Vt(X1) =
1
(m

t )
∑T∈([m]

t )
∏ j∈T X1 j. Therefore p1 will be a

linear combination of terms of the form Vt(X1)r(X2, . . . ,Xn) for t ≤ d−deg(r). On X1 ∈ {0,1}m of Ham-
ming weight |X1|, the sum Vt(X1) evaluates to

(|X1|
t

)
= |X1|(|X1|−1) · · ·(|X1|− t+1)/t!, which is a poly-

nomial in |X1|= ∑
m
j=1 X1 j of degree t. Hence we can define z1 = |X1|/m, and replace p1 by a polynomial

q1 of total degree at most d in z1,X2, . . . ,Xm, such that p1(X1, . . . ,Xn) = q1(|X1|/m,X2 . . . ,Xn). We thus
succeeded in replacing the block X1 by one real variable z1. Repeating this for X2, . . . ,Xn, we end up with
a polynomial q(z1, . . . ,zn) such that p(X1, . . . ,Xn) = q(|X1|/m, . . . , |Xn|/m) for all X1, . . . ,Xn ∈ {0,1}nm.
This q will not be multilinear anymore, but it has degree at most d =O(n) and it ε-robustly approximates
f : for every x ∈ {0,1}n and for every z ∈ [0,1]n satisfying |zi− xi| ≤ ε for all i ∈ [n], we have that q(z)
and f (x) are ε-close. (Strictly speaking we have only dealt with the case where the zi are multiples of
1/m, but we can choose m as large as we want and a low-degree polynomial cannot change much if its
input varies between i/m and (i+1)/m.)

Corollary 4.4 (BNRW). For every Boolean function f , there exists an n-variate polynomial of degree
O(n) that ε-robustly approximates f .

4.3 Closure properties of PP

The important classical complexity class PP consists of all languages L for which there exists a proba-
bilistic polynomial-time algorithm that accepts an input x with probability at least 1/2 if x ∈ L, and with
probability less than 1/2 if x /∈ L. Note that under this criterion, the algorithm’s acceptance probabilities
may be extremely close to 1/2, so PP is not a realistic definition of the class of languages feasibly com-
putable with classical randomness. Indeed, it is not hard to see that PP contains NP. Still, PP is worthy
of study because of its many relations to other complexity classes.

One of the most basic questions about a complexity class C is which closure properties it possesses.
For example, if L1,L2 ∈ C, is L1 ∩L2 ∈ C? That is, is C closed under intersection? In the case of PP,
this question was posed by Gill [50], who defined the class, and was open for many years before being
answered affirmatively by Beigel et al. [25]. It is now known that PP is closed under significantly more
general operations [25, 48, 2]. Aaronson [2] gave a new and arguably more intuitive proof of the known
closure properties of PP, by providing a quantum characterization of PP.

To describe this result, we first briefly introduce the model of quantum polynomial-time computa-
tion. A quantum circuit is a sequence of unitary operations U1, . . . ,UT , applied to the initial state |x〉|0m〉,
where x∈ {0,1}n is the input to the circuit and |0m〉 is an auxiliary workspace. By analogy with classical
circuits, we require that each Ut be a local operation which acts on a constant number of qubits. For

concreteness, we require each Ut to be a Hadamard gate, or the single-qubit operation
(

1 0
0 e

iπ
4

)
, or

the two-qubit controlled-NOT gate (which maps computational basis states |a,b〉 7→ |a,a⊕b〉). A com-
putation ends by measuring the first workspace qubit. We say that such a circuit computes a function
fn : {0,1}n→{0,1} with bounded error if on each x ∈ {0,1}n, the final measurement equals fn(x) with
probability at least 2/3. BQP is the class of languages computable with bounded error by a logspace-
uniform family of polynomial-size quantum circuits. Here, both the workspace size and the number of
unitaries are required to be polynomial. The collection of gates we have chosen is universal, in the sense
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that it can efficiently simulate any other collection of local unitaries to within any desired precision [98,
Section 4.5.3]. Thus our definition of BQP is a robust one.

In [2], Aaronson investigated the power of a “fantasy” extension of quantum computing in which an
algorithm may specify a desired outcome of a measurement in the standard basis, and then condition the
quantum state upon seeing that outcome (we require that this event have nonzero probability). Formally,
if a quantum algorithm is in the pure state |ψ〉 = |ψ0〉|0〉+ |ψ1〉|1〉 (where we have distinguished a
1-qubit register of interest, and |ψ1〉 is non-zero), then the postselection transformation carries |ψ〉 to
|ψ1〉|1〉√
〈ψ1|ψ1〉

. The complexity class PostBQP is defined as the class of languages computable with bounded

error by a logspace-uniform family of polynomial-size quantum circuits that are allowed to contain
postselection gates. We have:

Theorem 4.5 (Aaronson). PP = PostBQP.

From Theorem 4.5, the known closure properties of PP follow easily. For example, it is clear that if
L1,L2 ∈ PostBQP, then we may amplify the success probabilities in the PostBQP algorithms for these
languages, then simulate them and take their AND to get a PostBQP algorithm for L1∩L2. This shows
that PostBQP (and hence also PP) is closed under intersection.

Proof (sketch). We begin with a useful claim about postselection: any quantum algorithm with post-
selection can be modified to make just a single postselection step after all its unitary transformations
(but before its final measurement). We say that such a postselection algorithm is in canonical form. To
achieve this, given any PostBQP algorithm A for a language L, consider a new algorithm A′ which on
input x, simulates A(x). Each time A makes a postselecting measurement on a qubit, A′ instead records
that qubit’s value into a fresh auxiliary qubit. At the end of the simulation, A′ postselects on the event
that all these recorded values are 1, by computing their AND in a final auxiliary qubit |z〉 and postse-
lecting on |z〉 = |1〉. The final state of A′(x) is equivalent to the final state of A(x), so A′ is a PostBQP
algorithm for L and is in canonical form. This conversion makes it easy to show that PostBQP ⊆ PP, by
the same techniques which show BQP ⊆ PP [5]. We omit the details, and turn to show PP ⊆ PostBQP.

Let L ∈ PP, and let M be a probabilistic polynomial-time algorithm witnessing this fact. Say M uses
m = poly(n) random bits on an input x of length n. Then any such input defines a function g = gx :
{0,1}m→{0,1}, by the rule

g(r) = [M(x) accepts when using r as its random string].

By definition, x ∈ L⇔ |g−1(1)| ≥ 2m−1. We show how to determine whether |g−1(1)| ≥ 2m−1, in quan-
tum polynomial time with postselection. Let s = |g−1(1)|; we may assume without loss of generality
that s > 0. The core of the algorithm is the following subroutine, which uses postselection to produce a
useful quantum state:

A1. Initialize an (m+1)-bit register to |0m+1〉. Apply H⊗m to the first m qubits, then apply g to these
qubits and add the result into the (m+1)-st qubit, yielding the state 1√

2m ∑x∈{0,1}m |x〉|g(x)〉.

A2. Apply a Hadamard gate to each qubit of the x-register, yielding

1√
2m ∑

x∈{0,1}m

(
1√
2m ∑

w∈{0,1}m

(−1)w·x|w〉

)
|g(x)〉,
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where w · x = ∑i wixi denotes inner product of bit strings. Note that 0m · x = 0 for all x, so the
component of the above state with first register equal to 0m is 1

2m ((2m− s)|0〉+ s|1〉).

A3. Postselect on the first m qubits measuring to 0m. This yields the reduced state

|ψ〉= (2m− s)|0〉+ s|1〉√
(2m− s)2 + s2

on the last qubit.

Using this subroutine, we can prepare fresh copies of |ψ〉 on demand. Now let (α,β ) be a pair of
positive reals to be specified later, satisfying α2+β 2 = 1. Using this pair, we define a second subroutine:

B1. Prepare a qubit |z〉 = α|0〉+β |1〉. Perform a controlled-Hadamard operation on a fresh copy of
|ψ〉 with control qubit |z〉, yielding the joint state α|0〉|ψ〉+β |1〉H|ψ〉. Note that

H|ψ〉=
1√
2
(2m|0〉+(2m−2s)|1〉)√

(2m− s)2 + s2
.

B2. Now postselect on the second qubit measuring to 1, yielding the reduced state

|z′〉=
αs|0〉+β

1√
2
(2m−2s)|1〉√

α2s2 +(β 2/2)(2m−2s)2
.

Perform a projective measurement relative to the basis {|+〉, |−〉} = { |0〉+|1〉√
2

, |0〉−|1〉√
2
}, recording

the result.

Finally, our algorithm to determine if s ≥ 2m−1 is as follows: we perform steps B1-B2 for each choice
of (α,β ) from a collection {(αi,βi)}m

i=−m of pairs chosen to satisfy αi
βi
= 2i, i ∈ {−m, . . . ,m}. For each

choice of i, we repeat steps B1-B2 for O(logm) trials, and use the results to estimate the probability
|〈+|z′〉|2 of outcome |+〉 under (αi,βi).

The idea of the analysis is that, if s < 2m−1, then |z′〉 is in the strictly-positive quadrant of the real
plane with axes |0〉, |1〉; here we are using that α,β are positive. Then a suitable choice of (αi,βi) will
cause |z′〉 to be closely aligned with |+〉, and will yield measurement outcome |+〉with probability close
to 1. On the other hand, if s ≥ 2m−1, then |z′〉 is never in the same quadrant as |+〉 or the equivalent
state −|+〉. Then, for any choice of (α,β ) we have |〈+|z′〉| ≤ 1/

√
2 and the probability of measuring

|+〉 is at most 1/2. Thus our repeated trials allow us to determine with high probability whether or not
s≥ 2m−1. We conclude that PP ⊆ PostBQP.

The original proof that PP is closed under intersection [25] crucially relied on ideas from approxi-
mation by rational functions, i. e., by ratios of polynomials. Aaronson’s proof can also be seen as giving
a new method for building rational approximations. To see this, note that the postselection operation
also makes sense in the quantum query model, and that in this model as well algorithms may be put in
canonical form (with a single postselection). Suppose a canonical-form query algorithm with postselec-
tion makes T quantum queries. If its state before the postselection step is |ψT 〉 = |ψT

0 〉|0〉+ |ψT
1 〉|1〉,
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then the amplitudes of |ψT
1 〉 are degree-T multilinear polynomials in the input x, by Corollary 2.4. Then

inspecting the postselected state |ψT
1 〉|1〉√
〈ψT

1 |ψT
1 〉

, we see that the squared amplitudes are rational functions of x

of degree 2T in x, that is, each squared amplitude can be expressed as p(x)/q(x), where both numerator
and denominator are polynomials of degree at most 2T . Moreover, all squared amplitudes have the same
denominator q(x) = 〈ψT

1 |ψT
1 〉. Thus in the final decision measurement, the acceptance probability is a

degree-2T rational function of x.
This may be a useful framework for designing other rational approximations. In fact, one can show

the quantum approach to rational approximation always gives an essentially optimal degree: if f is 1/3-
approximated by a rational function of degree d, then f is computed by a quantum query algorithm with
postselection, making O(d) queries [127], and vice versa. Such a tight, constant-factor relation between
query complexity and degree is known to be false for the case of the usual (non-postselected) quantum
query algorithms and the usual approximate degree [15].

4.4 Jackson’s theorem

In this section we describe how a classic result in approximation theory, Jackson’s Theorem, can be
proved using quantum ideas.

The approximation of complicated functions by simpler ones, such as polynomials, has interested
mathematicians for centuries. A fundamental result of this type is Weierstrass’s Theorem from 1885 [123],
which states that any continuous function g : [0,1]→ R can be arbitrarily well-approximated by poly-
nomials. For any function f : [0,1]→ R, let ‖ f‖

∞
= supx∈[0,1] | f (x)|; then Weierstrass’s Theorem states

that for any continuous g and any ε > 0, there exists a polynomial p(x) such that ‖p−g‖
∞
< ε .

In 1912 Bernstein gave a simple construction of such polynomials, which can be described in a
probabilistic fashion [28, 13]. Fix a continuous function g on [0,1] and a value n ≥ 1, and consider
the following algorithm: flip n coins, each taking value ‘1’ with probability x. Let t ∈ {0, . . . ,n} be the
number of 1s observed in the resulting string X ∈ {0,1}n. Output g(t/n). Note that the expected value
of the random variable t/n is exactly x, and its standard deviation is O(1/

√
n). Consider the expected

value of the output of this procedure, given a bias x:

Bg,n(x) = E [g(|X |/n)] =
n

∑
t=0

Pr [|X |= t] ·g(t/n) .

We have Pr [|X |= t] =
(n

t

)
xt(1−x)n−t , hence Bg,n(x) is a polynomial in x of degree at most n. Moreover,

Bg,n(x) is intuitively a good estimator for g(x) since t/n is usually close to x. To quantify this, let ωδ (g),
the modulus of continuity of g at scale δ , be the supremum of |g(x)−g(y)| over all x,y ∈ [0,1] such that
|x−y| ≤ δ . Then it can be shown [111] that ‖Bg,n−g‖

∞
= O(ω1/

√
n(g)). This is not too surprising since

we expect the fraction of heads observed to be concentrated in an interval of length O(1/
√

n) around x.
The interval [0,1] is compact, so g is uniformly continuous and ωδ (g)→ 0 as δ → 0. Thus the Bernstein
polynomials yield a quantitative refinement of Weierstrass’s Theorem.

Around the same time as Bernstein’s work, an improved result was shown by Jackson [63]:

Theorem 4.6 (Jackson). If g is continuous, then for all n≥ 1 there exists a polynomial Jg,n of degree n
such that ‖Jg,n−g‖

∞
= O(ω1/n(g)).
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In Jackson’s theorem the quality of approximation is based on the maximum fluctuation of g at
a much smaller scale than Bernstein’s (1/n instead of 1/

√
n). Up to the constant factor, Jackson’s

Theorem is optimal for approximation guarantees based on the modulus of continuity. The original proof
used trigonometric ideas. Drucker and de Wolf [41] gave a proof of Jackson’s Theorem that closely
follows Bernstein’s idea, but replaces his classical estimation procedure with the quantum counting
algorithm of [29]. As mentioned in Section 2.3, with M queries this algorithm produces an estimate
t̃ of the Hamming weight t = |X | of a string X ∈ {0,1}N , such that for every integer j ≥ 1 we have
Pr[|t̃ − t| ≥ jN/M] = O(1/ j). For our purposes we need an even sharper estimate. To achieve this,
let Count ′(X ,M) execute Count(X ,M) five times, yielding estimates t̃1, . . . , t̃5, and output their median,
denoted t̃med .9 Note that for |t̃med − t| ≥ jN/M to hold, we must have |t̃i− t| ≥ jN/M for at least three
of the trials i ∈ {1, . . . ,5}. This happens with probability at most O(1/ j3), which implies

E [|t̃med− t|]≤ ∑
j≥1

jN
M
·O(1/ j3) = O(N/M) . (4.2)

With this estimator in hand, let us fix a continuous function g and n ≥ 1, and consider the following
algorithm A(x) to estimate g(x) for an unknown value x: flip N = n2 independent coins, each taking
value ‘1’ with probability x, yielding an N-bit string X . Set M = bn/10c and run Count ′(X ,M), yielding
an estimate t̃med , and output g(t̃med/N). This algorithm makes 5M ≤ n/2 queries to X , so it follows from
Corollary 2.4 that its expected output value (viewed as a function of the N bits of X) is a multilinear
polynomial of degree at most n. Define Jg,n(x) = E[A(x)], where the expectation is taken both over
the choice of X and over the randomness in the output of the quantum counting procedure. Note that
E[Xi1 · · ·Xid ] = xd , since the bits of X are independent coin flips, each with expectation x. Hence Jg,n is a
degree-n univariate polynomial in x. We bound |Jg,n(x)−g(x)| as follows. Consider the random variable
x̃ = t̃med/N. Using the definition of ω1/n(g), we have

|Jg,n(x)−g(x)| = |E[g(x̃)]−g(x)|
≤ E[|g(x̃)−g(x)|]
≤ E[(n · |x̃− x|+1) ·ω1/n(g)]

=

(
n · 1

N
E[|t̃med− xN|]+1

)
·ω1/n(g)

≤
(

1
n
(E[|t̃med− t|]+E[|t− xN|])+1

)
·ω1/n(g).

Since t = |X | has expectation xN and variance x(1− x)N, we have E[|t− xN|] = O(
√

N) = O(n). By
Eq. (4.2) we have E[|t̃med − t|] = O(N/M) = O(n). Plugging these two findings into our expression
yields |Jg,n(x)−g(x)|= O(ω1/n(g)), for all x ∈ [0,1]. This proves Jackson’s Theorem.

At the heart of quantum counting, one finds trigonometric ideas closely related to those used in
some classical proofs of Jackson’s Theorem (see [41] for a discussion). Thus it is not really fair to call
the above a simplified proof. It does, however, show how Bernstein’s elegant probabilistic approach to
polynomial approximation can be carried further with the use of quantum algorithms.

9A more careful analysis in [41] allows a median of three trials to be used.
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4.5 Separating strong and weak communication versions of PP

The previous examples all used the connection between polynomials and quantum algorithms, more
precisely the fact that an efficient quantum (query) algorithm induces a low-degree polynomial. The
last example of this section uses a connection between polynomials and quantum communication pro-
tocols. Communication complexity was introduced in Section 3.1. Like computational complexity,
communication complexity has a host of different models: one can study deterministic, bounded-error,
or non-deterministic protocols, and so on. Recall the complexity class PP from Section 4.3. This class
has two plausible analogues in the communication setting: an unbounded-error version and a weakly-
unbounded-error version. In the first, we care about the minimal c such that there is a c-bit randomized
communication protocol computing f : {0,1}n×{0,1}n → {0,1} correctly with success probability
strictly greater than 1/2 on every input (though the success probability may be arbitrarily close to 1/2).
In the second version, we care about the minimal c such that there is a c-bit randomized protocol com-
puting f correctly with success probability at least 1/2+β on every input, for β ≥ 2−c. The motivation
for the second version is that c plays the role that computation-time takes for the computational class
PP, and in that class we automatically have β ≥ 2−c: a time-c Turing machine cannot flip more than c
fair coins, so all events have probabilities that are multiples of 1/2c. Let UPP( f ) and PP( f ) correspond
to the minimal communication c in the unbounded and weakly-unbounded cases, respectively. Both
measures were introduced by Babai et al. [19], who asked whether they were approximately equal. (One
direction is clear: UPP( f )≤ PP( f )).

These two complexity measures are interesting as models in their own right, but are all the more
interesting because they each correspond closely to fundamental complexity measures of Boolean ma-
trices. First, UPP( f ) equals (up to a small additive constant) the log of the sign-rank of f [101]. This is
the minimal rank among all 2n×2n matrices M satisfying that the sign of the entry Mx,y equals (−1) f (x,y)

for all inputs. Second, PP( f ) is essentially the discrepancy bound [72], which in turn is essentially the
margin complexity of f [86, 85]. The latter is an important and well-studied concept from computational
learning theory. Accordingly, an example where UPP( f )� PP( f ) also separates sign-rank on the one
hand from discrepancy and margin complexity on the other.

Simultaneously but independently, Buhrman et al. [33] and Sherstov [115] (later improved in [116])
found functions where UPP( f ) is exponentially smaller than PP( f ), answering the question from [19].
We will give the proof of [33] here. Our quantum tool is the following lemma, first proved (implicitly)
in [104] and made more explicit in [73, Section 5].

Lemma 4.7 (Razborov). Consider a quantum communication protocol on m-bit inputs x and y that
communicates q qubits, with outputs 0 and 1 (“reject” and “accept”), and acceptance probabilities
denoted by P(x,y). For i ∈ {0, . . . ,m/4}, define

P(i) = E|x|=|y|=m/4,|x∧y|=i[P(x,y)],

where the expectation is taken uniformly over all x,y ∈ {0,1}m that each have Hamming weight m/4
and that have intersection size i. For every d ≤ m/4 there exists a univariate degree-d polynomial p
(over the reals) such that |P(i)− p(i)| ≤ 2−d/4+2q for all i ∈ {0, . . . ,m/8}.

If we choose degree d = 8q+ 4log(1/ε), then p approximates P to within an additive ε for all
i ∈ {0, . . . ,m/8}. This allows us to translate quantum protocols to polynomials. The connection is not
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as clean as in the case of quantum query algorithms (Corollary 2.4): the relation between the degree and
the quantum communication complexity is less tight, and the resulting polynomial only approximates
certain average acceptance probabilities instead of exactly representing the acceptance probability on
each input.

Lemma 4.7 allows us to prove lower bounds on quantum communication complexity by proving
lower bounds on polynomial degree. The following result [43, 112] is a very useful degree bound:

Theorem 4.8 (Ehlich & Zeller; Rivlin & Cheney). Let p : R→ R be a polynomial such that b1 ≤
p(i) ≤ b2 for every integer 0 ≤ i ≤ n, and its derivative has |p′(x)| ≥ c for some real 0 ≤ x ≤ n. Then
deg(p)≥

√
cn/(c+b2−b1).

The function and its unbounded-error protocol: To obtain the promised separation, we use a dis-
tributed version of the ODD-MAX-BIT function of Beigel [24]. Let x,y ∈ {0,1}n, and k = max{i ∈ [n] :
xi = yi = 1} be the rightmost position where x and y both have a 1 (set k = 0 if there is no such position).
Define f (x,y) to be the least significant bit of k, i. e., whether this k is odd or even. Buhrman et al. [33]
proved:

Theorem 4.9 (BVW). For the distributed ODD-MAX-BIT function we have UPP( f ) = O(logn) and
PP( f ) = Ω(n1/3).

The upper bound is easy: For i ∈ [n], define probabilities pi = c2i, where c = 1/∑
n
i=1 2i is a nor-

malizing constant. Consider the following protocol. Alice picks a number i ∈ [n] with probability pi

and sends over (i,xi) using dlogne+ 1 bits. If xi = yi = 1 then Bob outputs the least significant bit of
i, otherwise he outputs a fair coin flip. This computes f with positive (but exponentially small) bias.
Hence UPP( f )≤ dlogne+1.

Weakly-unbounded-error lower bound: It will be convenient to lower-bound the complexity of
quantum protocols computing f with weakly-unbounded error, since this allows us to use Lemma 4.7.10

Consider a quantum protocol with q qubits of communication that computes f with bias β > 0. Let
β (x,y) = P(x,y)−1/2. Then β (x,y)≥ β if f (x,y) = 1, and β (x,y)≤−β if f (x,y) = 0. Our goal is to
lower-bound q+ log(1/β ). We will do that below by a process that iteratively fixes some of the input
bits, applying Lemma 4.7 to each intermediate function to find a good fixing, in a way that produces a
bounded function with larger and larger “swings.”

Define d = d8q+4log(2/β )e and m = 32d2 + 1. Assume for simplicity that 2m divides n. We
partition [n] into n/2m consecutive intervals (or “blocks”), each of length 2m. In the first interval (from
the left), fix the bits xi and yi to 0 for even i; in the second, fix xi and yi to 0 for odd i; in the third, fix xi

and yi to 0 for even i, etc. In the j-th interval there are m unfixed positions left for each party. Let x( j)

and y( j) denote the corresponding m-bit strings in x and y, respectively.
We will define inductively, for all j = 1,2, . . . ,n/2m, particular strings x( j) and y( j) as follows. Let X j

and Y j denote n-bit strings where the first j blocks are set to x(1), . . . ,x( j) and y(1), . . . ,y( j), respectively,
10We could just analyze classical protocols and use the special case of Razborov’s result that applies to classical protocols.

However, the classical version of Razborov’s lemma was not known prior to [104], and arguably would not have been discov-
ered if it were not for the more general quantum version. We would end up with the same communication lower bound anyway,
since quantum and classical weakly-unbounded error complexity turn out to be essentially the same [72, 62].
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and all the other blocks are set to 02m. In particular, X0 and Y 0 are all zeros. We will define x( j) and y( j)

so that
β (X j,Y j)≥ 2 j

β or β (X j,Y j)≤−2 j
β

depending on whether j is odd or even. This holds automatically for j = 0, which is the base case of the
induction.

Now assume x(1), . . . ,x( j−1) and y(1), . . . ,y( j−1) are already defined on previous steps. On the current
step, we have to define x( j) and y( j). Without loss of generality assume that j is odd, thus we have
β (X j−1,Y j−1) ≤ −2 j−1β . Consider each i = 0,1, . . . ,m/4. Run the protocol on the following distri-
bution: x( j) and y( j) are chosen randomly subject to each having Hamming weight m/4 and having
intersection size i; the blocks with indices smaller than j are fixed (on previous steps), and the blocks
with indices larger than j are set to zero. Let P(i) denote the expected value (over this distribution) of
β (x,y) as a function of i. Note that for i = 0 we have P(i) = β (X j−1,Y j−1) ≤ −2 j−1β . On the other
hand, for each i > 0 the expectation is taken over x,y with f (x,y) = 1, because the rightmost intersecting
point is in the j-th interval and hence odd (the even indices in the j-th interval have all been fixed to 0).
Thus P(i) ≥ β for those i. Now assume, by way of contradiction, that β (X j,Y j) < 2 jβ for all x( j),y( j)

and hence P(i) < 2 jβ for all such i. By Lemma 4.7, for our choice of d, we can approximate P(i) to
within additive error of β/2 by a polynomial p of degree d. (Apply Lemma 4.7 to the protocol obtained
from the original protocol by fixing all bits outside the j-th block.) Let r be the degree-d polynomial

r =
p−β/2
2 j−1β

.

From the properties of P and the fact that p approximates P up to β/2, we see that r(0) ≤ −1 and
r(i)∈ [0,2] for all i∈ [m/8]. But then by the degree lower bound of Theorem 4.8, deg(r)≥

√
(m/8)/4=√

d2 +1/32 > d, which is a contradiction. Hence there exists an intersection size i ∈ [m/8] where
P(i)≥ 2 jβ . Thus there are particular x( j),y( j) with β (X j,Y j)≥ 2 jβ , concluding the induction step.

For j = n/2m we obtain |β (X j,Y j)| ≥ 2n/2mβ . But for every x,y we have |β (x,y)| ≤ 1/2 because
1/2+β (x,y) = P(x,y) ∈ [0,1], hence 1/2≥ 2n/2mβ . This implies 2m log(1/2β )≥ n, and therefore

(q+ log(1/β ))3 ≥ (q+ log(1/β ))2 log(1/β ) = Ω(m log(1/β )) = Ω(n).

This allows us to conclude PP( f ) = Ω(n1/3), which is exponentially larger than UPP( f ).

5 Other applications

In this section we go over a few further examples of the use of quantum techniques in non-quantum
results, examples that do not fit in the two broad categories of the previous two sections. First we give
two examples of classical results that were both inspired by earlier quantum proofs, but do not explicitly
use quantum techniques.11 Finally, in Section 5.3 we give a brief guide to further literature with more
examples.

11This is reminiscent of a famous metaphor in Ludwig Wittgenstein’s Tractatus logico-philosophicus (6.45), about the ladder
one discards after having used it to climb to a higher level.
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5.1 The relational adversary

In Section 2.3 we described the polynomial method for proving lower bounds for quantum query com-
plexity. This method has a strength which is also a weakness: it applies even to a stronger (and less
physically meaningful) model of computation where we allow any linear transformation on the state
space, not just unitary ones. As a result, it does not always provide the strongest possible lower bound
for quantum query algorithms.

Ambainis [14, 15], building on an earlier method of Bennett et al. [27], addressed this problem
by providing a general method for quantum lower bounds, the quantum adversary, which exploits uni-
tarity in a crucial way and which in certain cases yields a provably better bound than the polynomial
method [15]. Surprisingly, Aaronson [3] was able to modify Ambainis’s argument to obtain a new
method, the relational adversary, for proving classical randomized query lower-bounds. He used this
method to give improved lower bounds on the complexity of the “local search” problem, in which one
is given a real-valued function F defined on the vertices of a graph G, and must locate a local minimum
of F . In this section we state Ambainis’s lower-bound criterion, outline its proof, and describe how
Aaronson’s method follows a similar outline.12

Recall from Section 2.3 that a quantum query algorithm is a sequence of unitary operations

UT OxUT−1Ox · · ·OxU1OxU0,

applied to the fixed starting state |0 . . .0〉, where the basic “query transformation” Ox depends on the
input x and U0,U1, . . . ,UT are arbitrary unitaries. Ambainis invites us to look simultaneously at the
evolution of our quantum state under all possible choices of x; formally, we let |ψ t

x〉 denote the state at
time t (i. e., after applying Ox for the t-th time) under input x. In particular, |ψ0

x 〉 = |0 . . .0〉 for all x
(and 〈ψ0

x |ψ0
y 〉 = 1 for each x,y). Now if the algorithm computes the Boolean function f with success

probability 2/3 on every input, then the final measurement must accept any pair x ∈ f−1(0),y ∈ f−1(1)
with success probabilities differing by at least 1/3. It is not hard to verify that this implies |〈ψT

x |ψT
y 〉| ≤

17
18 .13 This suggests that, for any given relation R⊆ f−1(0)× f−1(1) (which one may regard as a bipartite
graph), we consider the progress measure

St = ∑
(x,y)∈R

|〈ψ t
x|ψ t

y〉|

as a function of t. By our observations, initially we have S0 = |R|, and in the end we must have ST ≤
17
18 |R|. Also, crucially, the progress measure is unaffected by each application of a unitary Ut , since each
Ut is independent of the input and unitary transformations preserve inner products.

If we can determine an upper-bound ∆ on the change |St+1−St | in the progress measure at each step,
we can conclude that the number T of queries is at least |R|18∆

. Ambainis [14, 15] provides a condition on
R that allows us to derive such a bound:

12In both cases we state a simplified (“unweighted”) version of the lower-bound method in question, which conveys the
essence of the technique. After Ambainis’s original paper, a version of the lower bound was formulated that allows even
negative weights [60]. Reichardt [108] recently proved that this general adversary bound in fact characterizes quantum query
complexity.

13Contrapositively, and in greater generality, if |〈ψ1|ψ2〉| ≥ 1− ε then under any measurement, |ψ1〉 and |ψ2〉 have accep-
tance probabilities differing by at most

√
2ε (see [98, Section 9.2]).
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Theorem 5.1 (Ambainis). Suppose that the relation R satisfies

(i) each x ∈ f−1(0) appearing in R appears at least m0 times in R;

(ii) each y ∈ f−1(1) appearing in R appears at least m1 times in R;

(iii) for each x ∈ f−1(0) and i ∈ [n], there are at most `0 inputs y ∈ f−1(1) such that (x,y) ∈ R and
xi 6= yi;

(iv) for each y ∈ f−1(1) and i ∈ [n], there are at most `1 inputs x ∈ f−1(0) such that (x,y) ∈ R and
xi 6= yi.

Let the progress measure St be defined relative to a fixed quantum algorithm as above. Then for all t ≥ 0,

|St+1−St |= O
(√

`0
m0
· `1

m1
· |R|
)

, and therefore T = Ω

(√
m0
`0
· m1
`1

)
.

The art in applying Ambainis’s technique lies in choosing the relation R carefully to maximize this
quantity. Intuitively, conditions (i)-(iv) imply that |St+1− St | is small relative to |R| by bounding the
“distinguishing ability” of any query.

Every classical bounded-error algorithm is also a quantum bounded-error query algorithm, so the
above lower-bound also applies in the classical case. However, there are cases where this gives an
inferior bound. For example, for the promise problem of inverting a permutation, the above technique
yields a query bound of Ω(

√
n), which matches the true quantum complexity of the problem, while the

classical randomized complexity is Ω(n). In this and similar cases, the particular relation R used in
applying Theorem 5.1 for a quantum lower bound, is such that max{m0

`0
, m1
`1
} gives a good estimate of the

classical query complexity. This led Aaronson to prove in [3] a classical analogue of Ambainis’s lower
bound, in which the geometric mean of m0

`0
and m1

`1
is indeed replaced with their maximum.

A sketch of Aaronson’s proof is as follows. Fixing the relation R, we use Yao’s minimax principle
to show that, if there is a randomized T -query bounded-error algorithm for computing f , then there is
a deterministic algorithm A succeeding with high probability on a specific input distribution determined
by R (to be precise, pick a uniformly random pair (x,y) ∈ R and select x or y with equal probability.)
We now follow Ambainis, and consider for each input x and t ≤ T the state vt,x (which is now a fixed,
classical state) of the algorithm A after t steps on input x. Let It,x,y equal 1 if inputs x and y have not been
distinguished by A after t steps, otherwise It,x,y = 0. Define St = ∑(x,y)∈R It,x,y as our progress measure.14

Similarly to the quantum adversary, we have S0 = |R|, and Aaronson argues that the success con-
dition of A implies ST ≤ (1−Ω(1))|R|. A combinatorial argument then yields the following result
bounding the maximum possible change |St+1−St | after one (classical) query:

Theorem 5.2 (Aaronson). Suppose that the relation R obeys conditions (i)-(iv) in Theorem 5.1. Let the
progress measure St be defined relative to a deterministic algorithm A. Then for all t ≥ 0, |St+1−St |=
O
(

min{ `0
m0
, `1

m1
} · |R|

)
, and therefore T = Ω

(
max{m0

`0
, m1
`1
}
)

.

14Actually, Aaronson [3] defines an increasing function, but we modify this to show the similarity with Ambainis’s proof.
We note that if the states vt,x are written as quantum amplitude vectors, and the state of the algorithm A records all the
information it sees, It,x,y can actually be written as an inner product of quantum states just as in Ambainis’s proof.
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The details of Aaronson’s proof are somewhat different from those of Theorem 5.1, and there is no
explicit use of quantum states, but the spirit is clearly similar, illustrating that the quantum query model
is a sufficiently natural generalization of the classical model for ideas to flow in both directions. Subse-
quently, Laplante and Magniez [79] gave a different treatment of this based on Kolmogorov complexity,
which brings out the analogy between the quantum and classical adversary bounds even more closely.

5.2 Proof systems for the shortest vector problem

A lattice is an additive subgroup of Rn consisting of all integer combinations of a linearly independent
set of n vectors. It can be shown that for every lattice L, there exists a value λ (L) > 0, the minimum
(Euclidean) distance of the lattice, such that: (i) any two distinct x,y ∈ L are at distance at least λ (L)
from each other; (ii) there exists x ∈ L such that ‖x‖ = λ (L). Lattice vectors of length λ (L) are called
“shortest (nonzero) vectors” for L, and the problem of computing the minimum lattice distance is also
known as the “shortest vector problem” (SVP).

The problem of approximating λ (L) to within a multiplicative factor γ(n) can be equivalently for-
mulated as a promise problem called GapSVPγ(n), in which we are given a basis for a lattice L, with
the “promise” that either λ (L)≤ 1 or λ (L)≥ γ(n), and we must determine which case holds. A related
problem is the “closest vector problem” (CVP), in which we are given a basis for a lattice L, and a “tar-
get” vector v /∈ L, and would like to approximate the distance d(v,L) from v to the closest vector in the
lattice. In the promise problem GapCVPγ(n), we are given L and v and must distinguish the case where
d(v,L)≤ 1 from the case where d(v,L)≥ γ(n). It is known [54] that GapSVPγ(n) reduces to GapCVPγ(n)
for any approximation factor γ(n).

Approximate solutions to closest and shortest vector problems have numerous applications in pure
and applied mathematics. However, GapSVPγ(n) has been proven intractable even for super-constant ap-
proximation factors γ(n), albeit under an assumption somewhat stronger than P 6= NP [71, 58] (namely
that NP-complete problems are not solvable by a randomized algorithm in time 2polylog(n).) Even com-
puting an estimate with an exponential approximation guarantee in polynomial time is a highly nontrivial
task, achieved by the celebrated LLL algorithm [82]; the best current polynomial-time algorithm gives
only slightly subexponential approximation factors [11]. A nearly exponential gap remains between
the efficiently achievable approximation ratios and those for which we have complexity-theoretic evi-
dence of hardness. Also, despite intense effort, no quantum algorithms have been found which improve
significantly on their classical counterparts.

A breakthrough work of Ajtai [8] initiated a sequence of papers [9, 105, 91, 107, 10, 102] which
gave a strong motivation to better understand the approximability of various lattice problems. These
papers build cryptosystems which, remarkably, possess strong average-case security, based only on the
assumption that certain lattice problems are hard to approximate within polynomial factors in the worst
case.15 For a fuller discussion of lattice-based cryptography, see [92, 93].

15Intriguingly for us, Regev [106] gave one such cryptosystem based on a quantum hardness assumption, and recently
Peikert [102] built upon ideas in [106] to give a new system based on hardness assumptions against classical algorithms. This
is another example of a classical result based on an earlier quantum result. However, the connection is less tight than for the
proof systems of Aharonov and Regev, since Peikert replaced the quantum aspect of Regev’s earlier work by a fairly unrelated
classical approach.
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While these hardness assumptions remain plausible, another sequence of papers [77, 20, 52, 6, 7]
has given evidence that the shortest vector problem is not NP-hard to approximate within polynomial
factors (note, a problem may be intractable without being NP-hard). The most recent, due to Aharonov
and Regev [7], is a proof system for GapCVPc

√
n for sufficiently large c > 0. That is, if we are given a

basis for a lattice L with the promise that either d(v,L)≤ 1 or d(v,L)≥ c
√

n, there is a proof system to
convince us which of the two cases holds. One direction is simple: if d(v,L)≤ 1, then exhibiting a lattice
vector within distance 1 of v proves this (the promise is not needed in this case). The new contribution
of [7] is to supply proofs for the case where d(v,L)≥ c

√
n, showing that GapCVPc

√
n is in NP ∩ coNP

(technically, the promise-problem analogue of this class). It follows that GapCVPc
√

n cannot be NP-hard
unless the Polynomial Hierarchy collapses; see [7] for details of this implication.

The proof system of [7] is, in Aharonov and Regev’s own description, a “dequantization” of an ear-
lier, quantum Merlin-Arthur (QMA) proof system by the same authors [6] for GapCVPc

√
n.16 In a QMA

protocol, a computationally unbounded but untrustworthy prover (Merlin) sends a quantum state to a
polynomially-bounded quantum verifier (Arthur), who then decides to accept or reject without further
communication; unlike NP, QMA allows a small probability of error. Although Aharonov and Regev
analyze their second proof system in a completely classical way, the two papers offer an interesting case
study of how quantum ideas can be adapted to the classical setting. We now describe some of the ideas
involved; we begin with the quantum proof system of [6], then discuss the classical protocol of [7].

The quantum proof system: In the QMA protocol, Prover wants to convince Verifier that d(v,L) ≥
c
√

n for some large c > 0. Central to the proof system is the following geometric idea: for our given
lattice L, one defines a function F(x) : Rn→ [0,∞) that is lattice-periodic (i. e., F(x+ y) = F(x) for all
x ∈ Rn and y ∈ L) and is heavily concentrated in balls of radius�

√
n around the lattice points. Now

for each z ∈ Rn we consider the “z-shifted” version of F , Fz(x) = F(x+ z). The central idea is that if
d(z,L)≤ 1, then (informally speaking) Fz has large “overlap” with F , since the centers of mass shift only
slightly. On the other hand, if d(z,L) ≥ c

√
n, then Fz and F have negligible overlap, since the masses

of the two functions are then concentrated on disjoint sets of balls. In the proof system, Prover aims
to convince Verifier that this overlap is indeed negligible when z = v is the target vector. To this end,
Verifier asks to receive the “state”

|ξ 〉= ∑
x∈Rn

F(x)|x〉

describing the pointwise behavior of F(x). (Here and throughout, we give a simplified, idealized de-
scription; the actual protocol uses points x of finite precision, over a bounded region that captures the
behavior of the L-periodic function F . Thus all sums become finite, and states can be properly normal-
ized.) We think of |ξ 〉 as the “correct” proof which Verifier hopes to receive from Prover; note that |ξ 〉
is independent of v.

Verifier cannot hope to recover an arbitrary value from among the exponentially many values stored
in |ξ 〉. However, given |ξ 〉, an elegant technique allows Verifier to estimate the overlap of F with Fv, if

16Actually, for the quantum protocol of [6], we need the slightly stronger promise that when the input satisfies d(v,L)≥ c
√

n,
it also holds that λ (L)≥ c

√
n. A proof system for this restricted problem still yields a proof system for SVP with approximation

factor c
√

n.
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the overlap 〈F,Fv〉 is defined (imprecisely) as

〈F,Fv〉= ∑
x∈Rn

F(x)F(x+ v).

Aharonov and Regev show that the overlap measure 〈F,Fv〉 they define is extremely close to e−πd(v,L)2/4

for any v provided that λ (L)≥ c
√

n, so that it is indeed a good indicator of distance from the lattice.
To estimate this overlap, Verifier first appends a “control” qubit to |ξ 〉, initialized to 1√

2
(|0〉+ |1〉).

Conditioned on the control qubit being 1, he applies the transformation Tv which takes |y〉 to |y−v〉; this
yields the state 1√

2
(|0〉|ξ 〉+ |1〉Tv|ξ 〉). He then applies a Hadamard transformation to the control qubit,

yielding
1
2
(|0〉(|ξ 〉+Tv|ξ 〉)+ |1〉(|ξ 〉−Tv|ξ 〉)).

Finally, he measures the control qubit, which equals 1 with probability

1
4
(〈ξ |− 〈ξ |T ∗v )(|ξ 〉−Tv|ξ 〉) =

1
2
(1−Re(〈ξ |Tv|ξ 〉)).

Consulting the definition of |ξ 〉 and using that F is real-valued, we have Re(〈ξ |Tv|ξ 〉) = 〈F,Fv〉, so the
probability of measuring a 1 is linearly related to the overlap Verifier wants to estimate.

The procedure above allows Verifier to estimate d(v,L), on the assumption that Prover supplies the
correct quantum encoding of F . But Prover could send any quantum state |ψ〉, so Verifier needs to test
that |ψ〉 behaves something like the desired state |ξ 〉. In particular, for randomly chosen vectors z within
a ball of radius 1/poly(n) around the origin, the overlap 〈F,Fz〉, estimated by the above procedure,
should be about e−π‖z‖2/4.

Consider hψ(z) = Re(〈ψ|Tz|ψ〉) as a function of z. If this function could be arbitrary as we range
over choices of |ψ〉, then observing that hψ(z) ≈ hξ (z) for short vectors z would give us no confidence
that hψ(v) ≈ 〈F,Fv〉. However, Aharonov and Regev show that for every |ψ〉, the function hψ(z) obeys
a powerful constraint called positive definiteness. They then prove that any positive definite function
which is sufficiently “close on average” to the Gaussian e−π‖z‖2/4 in a small ball around 0, cannot
simultaneously be too close to zero at any point within a distance 1 of L. Thus if d(v,L) ≤ 1, any state
Prover sends must either fail to give the expected behavior around the origin, or fail to suggest negligible
overlap of F with Fv. We have sketched the core ideas of the quantum proof system; the actual protocol
requires multiple copies of |ξ 〉 to be sent, with additional, delicate layers of verification.

The classical proof system: We now turn to see how some of the ideas of this proof system were
adapted in [7] to give a classical, deterministic proof system for GapCVPc

√
n. The first new insight is

that for any lattice L, there is an L-periodic function f (x) which behaves similarly to F(x) in the previous
protocol, and which can be efficiently and accurately approximated at any point, using a polynomial-
sized classical advice string. (The function f (x) is defined as a sum of Gaussians, one centered around
each point in L.) This advice is not efficiently constructible given a basis for L, but we may still hope to
verify this advice if it is supplied by a powerful prover.

These approximations are derived using ideas of Fourier analysis. First we introduce the dual lattice
L∗, which consists of all w ∈ Rn satisfying 〈w,y〉 ∈ Z for all y ∈ L (here we use 〈·, ·〉 to denote inner
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product). For example, we have (Zn)∗ = Zn. Note that for w ∈ L∗, rw(x) = cos(2π〈w,x〉) is an L-
periodic function. In fact, any sufficiently smooth L-periodic real-valued function, such as f (x), can be
uniquely expressed as

f (x) = ∑
w∈L∗

f̂ (w)cos(2π〈w,x〉),

where the numbers f̂ (w) ∈ R are called the Fourier coefficients of f . Our choice of f has particularly
nicely-behaved Fourier coefficients: they are nonnegative and sum to 1, yielding a probability distribu-
tion (denoted by f̂ ). Thus f (x) = Ew∼ f̂ [cos(2π〈w,x〉)]. It follows from standard sampling ideas that

a large enough (N = poly(n)-sized) set of samples W = w1, . . . ,wN from f̂ will, with high probability,
allow us to accurately estimate f (x) at every point in a large, fine grid about the origin, by the approxi-
mation rule

fW (x) =
1
N

N

∑
i=1

cos(2π〈wi,x〉).

Since f is L-periodic and smooth, this yields good estimates everywhere. So, we let the proof string
consist of a matrix W of column vectors w1, . . . ,wN . Since Prover claims that the target vector v is quite
far from the lattice, and f is concentrated around the lattice points, Verifier expects to see that fW (x) is
small, say, less than 1/2.

As usual, Verifier must work to prevent Prover from sending a misleading proof. The obvious first
check is that the vectors wi sent are indeed in L∗. For the next test, a useful fact (which relies on
properties of the Gaussians used to define f ) is that samples drawn from f̂ are not too large and “tend
not to point in any particular direction”: Ew∼ f̂ [〈u,w〉

2] ≤ 1
2π

for any unit vector u. This motivates a
second test to be performed on the samples w1, . . . ,wN : check that the largest eigenvalue of WW T is at
most 3N.

In a sense, this latter test checks that fW has the correct “shape” in a neighborhood of the origin,
and plays a similar role to the random-sampling test from the quantum protocol.17 Like its quantum
counterpart, this new test is surprisingly powerful: if W is any collection of dual-lattice vectors satisfying
the eigenvalue constraint, and d(v,L) ≤ 1/100, then fW (v) ≥ 1/2 and Prover cannot use W to make v
pass the test. On the other hand, if d(v,L) ≥ c

√
n for large enough c, then choosing the columns of W

according to f̂ yields a witness that with high probability passes the two tests and satisfies fW (v)< 1/2.
Scaling by a factor 100 gives a proof system for GapCVP100c

√
n.

5.3 A guide to further literature

In this section we give pointers to other examples where quantum techniques are used to obtain classical
results in some way or other:

• Data structure lower bounds: Using linear-algebraic techniques, Radhakrishnan et al. [103]
proved lower bounds on the bit-length of data structures for the set membership problem with
quantum decoding algorithms. Their bounds of course also apply to classical decoding algorithms,
but are in fact stronger than the previous classical lower bounds of Buhrman et al. [31]. Sen

17Indeed, the testing ideas are similar, due to the fact that for any W , the function fW obeys the same “positive definiteness”
property used to analyze the quantum protocol.
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and Venkatesh did the same for data structures for the predecessor problem [113], proving a
“round elimination” lemma in the context of quantum communication complexity that is stronger
than the best known classical round elimination lemmas. A further strengthening of their lemma
was subsequently used by Chakrabarti and Regev [35] to obtain optimal lower bounds for the
approximate nearest neighbour problem.

• Formula lower bounds: Recall that a formula is a binary tree whose internal nodes are AND
and OR-gates, and each leaf is a Boolean input variable xi or its negation. The root of the tree
computes a Boolean function of the inputs in the obvious way. Proving superpolynomial formula
lower bounds for specific explicit functions in NP is a long-standing open problem in complexity
theory, the hope being that such a result would be a stepping-stone towards the superpolynomial
circuit lower bounds that would separate P from NP (currently, not even superlinear bounds are
known). The best proven formula-size lower bounds are nearly cubic [57], but a large class of
quadratic lower bounds can be obtained from a quantum result: Laplante et al. [78] showed that
the formula size of f is lower bounded by the square of the quantum adversary bound for f
(mentioned in Section 5.1). Since random functions, as well as many specific functions like Parity
and Majority, have linear adversary bounds, one obtains many quadratic formula lower bounds
this way.

• Circuit lower bounds: Kerenidis [69] describes an approach to prove lower bounds for classical
circuit depth using quantum multiparty communication complexity. Roughly speaking, the idea
is to combine two classical parties into one quantum party, prove lower bounds in the resulting
quantum model, and then translate these back to strong lower bounds for the classical model.
(Unfortunately, it seems hard to prove good lower bounds for the resulting quantum model [81].)

• Horn’s problem is to characterize the triples µ,ν , and λ of vectors of integers for which there
exist Hermitian operators A and B such that µ,ν , and λ are the spectra of A, B, and A + B,
respectively. It is known (and quite non-trivial) that this problem is equivalent to a question about
the representation theory of the group GL(d) of invertible d×d complex matrices. Christandl [38]
reproved a slightly weaker version of this equivalence based on quantum information theory.

• Secret-key distillation: In cryptography, Gisin, Renner, and Wolf [51] used an analogy with
“quantum bound entanglement” to provide evidence against the conjecture that the “intrinsic in-
formation” in a random variable shared by Alice, Bob, and eavesdropper Eve always equals the
amount of secret key that Alice and Bob can extract from this; later this conjecture was indeed
disproved [110], though without using quantum methods.

• Equivalence relations and invariants: A function f is said to be a complete invariant for the
equivalence relation R if (x,y) ∈ R⇔ f (x) = f (y). It is an interesting question whether every
polynomial-time computable equivalence relation has a polynomial-time computable complete
invariant. Fortnow and Grochow [47, Theorem 4.3] show this would imply that the class UP
reduces to Simon’s problem [118] (and hence would be in BQP, which seems unlikely).

• Learning positive semidefinite matrices: Tsuda, Rätsch, and Warmuth [120] study online learn-
ing of positive semidefinite matrices using properties of von Neumann divergence (a.k.a. quantum
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relative entropy) in their analysis in order to measure differences between density matrices.

• Johansson’s theorem asymptotically equates the expected shape of the semi-standard tableau
produced by a random word in k letters, with the spectrum of a certain random matrix. Kuper-
berg [74] provides a proof of this theorem by treating the random matrix as a quantum random
variable on the space of random words. In another paper, Kuperberg [75] also proved a central
limit theorem for non-commutative random variables in a von Neumann algebra with a tracial
state, based on quantum ideas.

6 Conclusion

In this paper we surveyed the growing list of applications of quantum computing techniques to non-
quantum problems, in areas ranging from theoretical computer science to pure mathematics. These
proofs build on current research in quantum computing, but do not depend on whether a large-scale
quantum computer will ever be built. One could even go further, and use mathematical frameworks that
go “beyond quantum” as a proof-tool. The use of PostBQP in Section 4.3 is in this vein, since we don’t
expect postselection to be physically implementable.

We feel that “thinking quantumly” can be a source of insight and of charming, surprising proofs:
both proofs of new results and simpler proofs of known results (of course, “simplicity” is in the eye of
the beholder here). While the examples in this survey do not constitute a full-fledged proof method yet,
our hope is that both the quantum toolbox and its range of applications will continue to grow.

A The most general quantum model

The ingredients introduced in Section 2.1 are all the quantum mechanics we need for the applications of
this survey. However, a more general formalism exists, which we will explain here with a view to future
applications—who knows what these may need!

First we generalize pure states. In the classical world we often have uncertainty about the state of a
system, which can be expressed by viewing the state as a random variable that has a certain probability
distribution over the set of basis states. Similarly we can define a mixed quantum state as a probability
distribution (or “mixture”) over pure states. While pure states are written as vectors, it is most conve-
nient to write mixed states as density matrices. A pure state |φ〉 corresponds to the rank-one density
matrix |φ〉〈φ |, which is the outer product of the vector |φ〉 with itself. A mixed state that is in (not nec-
essarily orthogonal) pure states |φ1〉, . . . , |φk〉 with probabilities p1, . . . , pk, respectively, corresponds to
the density matrix ∑

k
i=1 pi|φi〉〈φi|. The set of density matrices is exactly the set of positive semidefinite

(PSD) matrices of trace 1. A mixed state is pure if, and only if, its density matrix has rank 1.
The most general quantum operation on density matrices is a completely-positive, trace-preserving

(CPTP) map. By definition, this is a linear map that sends density matrices to density matrices, even
when tensored with the identity operator on another space. Alternatively, a map S : ρ 7→ S(ρ) from
d× d-matrices to d′× d′-matrices is a CPTP map if, and only if, it has a Kraus-representation: there
are d′×d matrices M1, . . . ,Mk, satisfying ∑

k
i=1 M∗i Mi = I, such that S(ρ) = ∑

k
i=1 MiρM∗i for every d×d

density matrix ρ . A unitary map U corresponds to k = 1 and M1 =U , so unitaries act on mixed states by
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conjugation: ρ 7→UρU∗. Note that a CPTP map can change the dimension of the state. For instance, the
map that traces out (“throws away”) the second register of a 2-register state is a CPTP map. Formally,
this map is defined on tensor-product states as Tr2(A⊗B) = A, and extended to all 2-register states by
linearity.

CPTP maps also include measurements as a special case. For instance, a projective measurement
with projectors P1, . . . ,Pk that writes the classical outcome in a second register, corresponds to a CPTP
map S with Kraus operators Mi = Pi⊗|i〉. We now have

S(ρ) =
k

∑
i=1

MiρM∗i =
k

∑
i=1

PiρP∗i
Tr(PiρP∗i )

⊗Tr(PiρP∗i )|i〉〈i|.

This writes the classical value i in the second register with probability Tr(PiρP∗i ), and “collapses” ρ in
the first register to its normalized projection in the subspace corresponding to Pi.

While this framework of mixed states and CPTP maps looks more general than the earlier framework
of pure states and unitaries, philosophically speaking it is not: every CPTP map can be implemented
unitarily on a larger space. What this means is that for every CPTP map S, there exists a state ρ0 on an
auxiliary space, and a unitary on the joint space, such that for every ρ , the state S(ρ) equals what one
gets by tracing out the auxiliary register from the state U(ρ ⊗ρ0)U∗. We refer to the book of Nielsen
and Chuang [98, Section 8.2] for more details.
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[73] H. KLAUCK, R. ŠPALEK, AND R. DE WOLF: Quantum and classical strong direct product theo-
rems and optimal time-space tradeoffs. SIAM J. Comput., 36(5):1472–1493, 2007. Earlier version
in FOCS’04. quant-ph/0402123. 13, 30

[74] G. KUPERBERG: Random words, quantum statistics, central limits, random matrices. Methods
and Applications of Analysis, 9(1):101–119, 2002. math/9909104. 40

[75] G. KUPERBERG: A tracial quantum central limit theorem. Trans. Amer. Math. Soc., 357:459–471,
2005. math-ph/0202035. 40

[76] E. KUSHILEVITZ AND N. NISAN: Communication Complexity. Cambridge University Press,
1997. 14

THEORY OF COMPUTING 46

http://dx.doi.org/10.4086/toc


QUANTUM PROOFS FOR CLASSICAL THEOREMS

[77] J. C. LAGARIAS, H. W. LENSTRA, JR., AND C.-P. SCHNORR: Korkin-Zolotarev bases and
successive minima of a lattice and its reciprocal lattice. Combinatorica, 10(4):333–348, 1990. 36

[78] S. LAPLANTE, T. LEE, AND M. SZEGEDY: The quantum adversary method and classical for-
mula size lower bounds. Computational Complexity, 15(2):163–196, 2006. 39

[79] S. LAPLANTE AND F. MAGNIEZ: Lower bounds for randomized and quantum query complexity
using Kolmogorov arguments. In Proc. 19th IEEE Conf. on Computational Complexity, pp. 294–
304, 2004. quant-ph/0311189. 35

[80] T. LEE: A note on the sign degree of formulas, 2009. arxiv/0909.4607. 21

[81] T. LEE, G. SCHECHTMAN, AND A. SHRAIBMAN: Lower bounds on quantum multiparty com-
munication complexity. In Proc. 24th IEEE Conf. on Computational Complexity, pp. 254–262,
2009. 39

[82] A. K. LENSTRA, H. W. LENSTRA, JR., AND L. LOVÁSZ: Factoring polynomials with rational
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