157,475 research outputs found

    Machines, Logic and Quantum Physics

    Full text link
    Though the truths of logic and pure mathematics are objective and independent of any contingent facts or laws of nature, our knowledge of these truths depends entirely on our knowledge of the laws of physics. Recent progress in the quantum theory of computation has provided practical instances of this, and forces us to abandon the classical view that computation, and hence mathematical proof, are purely logical notions independent of that of computation as a physical process. Henceforward, a proof must be regarded not as an abstract object or process but as a physical process, a species of computation, whose scope and reliability depend on our knowledge of the physics of the computer concerned.Comment: 19 pages, 8 figure

    The Quantum Frontier

    Full text link
    The success of the abstract model of computation, in terms of bits, logical operations, programming language constructs, and the like, makes it easy to forget that computation is a physical process. Our cherished notions of computation and information are grounded in classical mechanics, but the physics underlying our world is quantum. In the early 80s researchers began to ask how computation would change if we adopted a quantum mechanical, instead of a classical mechanical, view of computation. Slowly, a new picture of computation arose, one that gave rise to a variety of faster algorithms, novel cryptographic mechanisms, and alternative methods of communication. Small quantum information processing devices have been built, and efforts are underway to build larger ones. Even apart from the existence of these devices, the quantum view on information processing has provided significant insight into the nature of computation and information, and a deeper understanding of the physics of our universe and its connections with computation. We start by describing aspects of quantum mechanics that are at the heart of a quantum view of information processing. We give our own idiosyncratic view of a number of these topics in the hopes of correcting common misconceptions and highlighting aspects that are often overlooked. A number of the phenomena described were initially viewed as oddities of quantum mechanics. It was quantum information processing, first quantum cryptography and then, more dramatically, quantum computing, that turned the tables and showed that these oddities could be put to practical effect. It is these application we describe next. We conclude with a section describing some of the many questions left for future work, especially the mysteries surrounding where the power of quantum information ultimately comes from.Comment: Invited book chapter for Computation for Humanity - Information Technology to Advance Society to be published by CRC Press. Concepts clarified and style made more uniform in version 2. Many thanks to the referees for their suggestions for improvement

    Quantum Computing: Pro and Con

    Get PDF
    I assess the potential of quantum computation. Broad and important applications must be found to justify construction of a quantum computer; I review some of the known quantum algorithms and consider the prospects for finding new ones. Quantum computers are notoriously susceptible to making errors; I discuss recently developed fault-tolerant procedures that enable a quantum computer with noisy gates to perform reliably. Quantum computing hardware is still in its infancy; I comment on the specifications that should be met by future hardware. Over the past few years, work on quantum computation has erected a new classification of computational complexity, has generated profound insights into the nature of decoherence, and has stimulated the formulation of new techniques in high-precision experimental physics. A broad interdisciplinary effort will be needed if quantum computers are to fulfill their destiny as the world's fastest computing devices. (This paper is an expanded version of remarks that were prepared for a panel discussion at the ITP Conference on Quantum Coherence and Decoherence, 17 December 1996.)Comment: 17 pages, LaTeX, submitted to Proc. Roy. Soc. Lond. A, minor correction

    Non-Abelian Anyons and Topological Quantum Computation

    Full text link
    Topological quantum computation has recently emerged as one of the most exciting approaches to constructing a fault-tolerant quantum computer. The proposal relies on the existence of topological states of matter whose quasiparticle excitations are neither bosons nor fermions, but are particles known as {\it Non-Abelian anyons}, meaning that they obey {\it non-Abelian braiding statistics}. Quantum information is stored in states with multiple quasiparticles, which have a topological degeneracy. The unitary gate operations which are necessary for quantum computation are carried out by braiding quasiparticles, and then measuring the multi-quasiparticle states. The fault-tolerance of a topological quantum computer arises from the non-local encoding of the states of the quasiparticles, which makes them immune to errors caused by local perturbations. To date, the only such topological states thought to have been found in nature are fractional quantum Hall states, most prominently the \nu=5/2 state, although several other prospective candidates have been proposed in systems as disparate as ultra-cold atoms in optical lattices and thin film superconductors. In this review article, we describe current research in this field, focusing on the general theoretical concepts of non-Abelian statistics as it relates to topological quantum computation, on understanding non-Abelian quantum Hall states, on proposed experiments to detect non-Abelian anyons, and on proposed architectures for a topological quantum computer. We address both the mathematical underpinnings of topological quantum computation and the physics of the subject using the \nu=5/2 fractional quantum Hall state as the archetype of a non-Abelian topological state enabling fault-tolerant quantum computation.Comment: Final Accepted form for RM

    A scalable architecture for quantum computation with molecular nanomagnets

    Get PDF
    A proposal for a magnetic quantum processor that consists of individual molecular spins coupled to superconducting coplanar resonators and transmission lines is carefully examined. We derive a simple magnetic quantum electrodynamics Hamiltonian to describe the underlying physics. It is shown that these hybrid devices can perform arbitrary operations on each spin qubit and induce tunable interactions between any pair of them. The combination of these two operations ensures that the processor can perform universal quantum computations. The feasibility of this proposal is critically discussed using the results of realistic calculations, based on parameters of existing devices and molecular qubits. These results show that the proposal is feasible, provided that molecules with sufficiently long coherence times can be developed and accurately integrated into specific areas of the device. This architecture has an enormous potential for scaling up quantum computation thanks to the microscopic nature of the individual constituents, the molecules, and the possibility of using their internal spin degrees of freedom.Comment: 27 pages, 6 figure
    corecore