10,374 research outputs found

    Improved Quantum Communication Complexity Bounds for Disjointness and Equality

    Get PDF
    We prove new bounds on the quantum communication complexity of the disjointness and equality problems. For the case of exact and non-deterministic protocols we show that these complexities are all equal to n+1, the previous best lower bound being n/2. We show this by improving a general bound for non-deterministic protocols of de Wolf. We also give an O(sqrt{n}c^{log^* n})-qubit bounded-error protocol for disjointness, modifying and improving the earlier O(sqrt{n}log n) protocol of Buhrman, Cleve, and Wigderson, and prove an Omega(sqrt{n}) lower bound for a large class of protocols that includes the BCW-protocol as well as our new protocol.Comment: 11 pages LaTe

    The Quantum Complexity of Set Membership

    Get PDF
    We study the quantum complexity of the static set membership problem: given a subset S (|S| \leq n) of a universe of size m (m \gg n), store it as a table of bits so that queries of the form `Is x \in S?' can be answered. The goal is to use a small table and yet answer queries using few bitprobes. This problem was considered recently by Buhrman, Miltersen, Radhakrishnan and Venkatesh, where lower and upper bounds were shown for this problem in the classical deterministic and randomized models. In this paper, we formulate this problem in the "quantum bitprobe model" and show tradeoff results between space and time.In this model, the storage scheme is classical but the query scheme is quantum.We show, roughly speaking, that similar lower bounds hold in the quantum model as in the classical model, which imply that the classical upper bounds are more or less tight even in the quantum case. Our lower bounds are proved using linear algebraic techniques.Comment: 19 pages, a preliminary version appeared in FOCS 2000. This is the journal version, which will appear in Algorithmica (Special issue on Quantum Computation and Quantum Cryptography). This version corrects some bugs in the parameters of some theorem

    Separations in Query Complexity Based on Pointer Functions

    Get PDF
    In 1986, Saks and Wigderson conjectured that the largest separation between deterministic and zero-error randomized query complexity for a total boolean function is given by the function ff on n=2kn=2^k bits defined by a complete binary tree of NAND gates of depth kk, which achieves R0(f)=O(D(f)0.7537)R_0(f) = O(D(f)^{0.7537\ldots}). We show this is false by giving an example of a total boolean function ff on nn bits whose deterministic query complexity is Ω(n/log(n))\Omega(n/\log(n)) while its zero-error randomized query complexity is O~(n)\tilde O(\sqrt{n}). We further show that the quantum query complexity of the same function is O~(n1/4)\tilde O(n^{1/4}), giving the first example of a total function with a super-quadratic gap between its quantum and deterministic query complexities. We also construct a total boolean function gg on nn variables that has zero-error randomized query complexity Ω(n/log(n))\Omega(n/\log(n)) and bounded-error randomized query complexity R(g)=O~(n)R(g) = \tilde O(\sqrt{n}). This is the first super-linear separation between these two complexity measures. The exact quantum query complexity of the same function is QE(g)=O~(n)Q_E(g) = \tilde O(\sqrt{n}). These two functions show that the relations D(f)=O(R1(f)2)D(f) = O(R_1(f)^2) and R0(f)=O~(R(f)2)R_0(f) = \tilde O(R(f)^2) are optimal, up to poly-logarithmic factors. Further variations of these functions give additional separations between other query complexity measures: a cubic separation between QQ and R0R_0, a 3/23/2-power separation between QEQ_E and RR, and a 4th power separation between approximate degree and bounded-error randomized query complexity. All of these examples are variants of a function recently introduced by \goos, Pitassi, and Watson which they used to separate the unambiguous 1-certificate complexity from deterministic query complexity and to resolve the famous Clique versus Independent Set problem in communication complexity.Comment: 25 pages, 6 figures. Version 3 improves separation between Q_E and R_0 and updates reference

    The quantum query complexity of the hidden subgroup problem is polynomial

    Full text link
    We present a quantum algorithm which identifies with certainty a hidden subgroup of an arbitrary finite group G in only a polynomial (in log |G|) number of calls to the oracle. This is exponentially better than the best classical algorithm. However our quantum algorithm requires exponential time, as in the classical case. Our algorithm utilizes a new technique for constructing error-free algorithms for non-decision problems on quantum computers.Comment: To appear in Information Processing Letters (IPL
    corecore