871 research outputs found

    Implicit Lyapunov Control for the Quantum Liouville Equation

    Get PDF
    A quantum system whose internal Hamiltonian is not strongly regular or/and control Hamiltonians are not full connected, are thought to be in the degenerate cases. The most actual quantum systems are in these degenerate cases. In this paper, convergence problems of the multi-control Hamiltonians closed quantum systems in the degenerate cases are solved by introducing implicit function perturbations and choosing an implicit Lyapunov function based on the average value of an imaginary mechanical quantity. For the diagonal and non-diagonal target states, respectively, control laws are designed. The convergence of the control system is proved, and an explicit design principle of the imaginary mechanical quantity is proposed. By using the proposed method, the multi-control Hamiltonians closed quantum systems in the degenerate cases can converge from any initial state to an arbitrary target state unitarily equivalent to the initial state in most cases. Finally, numerical simulations are studied to verify the effectiveness of the proposed control method. The problem solved in this paper about the state transfer from any initial state to arbitrary target state of the quantum systems in degenerate cases approaches a big step to the control of actual systems. Keywords: perturbations, Lyapunov control, degenerate, convergence, non-diagonal target stat

    A Survey of Quantum Lyapunov Control Methods

    Get PDF
    The condition of a quantum Lyapunov-based control which can be well used in a closed quantum system is that the method can make the system convergent but not just stable. In the convergence study of the quantum Lyapunov control, two situations are classified: non-degenerate cases and degenerate cases. In this paper, for these two situations, respectively, the target state is divided into four categories: eigenstate, the mixed state which commutes with the internal Hamiltonian, the superposition state, and the mixed state which does not commute with the internal Hamiltonian state. For these four categories, the quantum Lyapunov control methods for the closed quantum systems are summarized and analyzed. Especially, the convergence of the control system to the different target states is reviewed, and how to make the convergence conditions be satisfied is summarized and analyzed.Comment: 1

    Information geometric methods for complexity

    Full text link
    Research on the use of information geometry (IG) in modern physics has witnessed significant advances recently. In this review article, we report on the utilization of IG methods to define measures of complexity in both classical and, whenever available, quantum physical settings. A paradigmatic example of a dramatic change in complexity is given by phase transitions (PTs). Hence we review both global and local aspects of PTs described in terms of the scalar curvature of the parameter manifold and the components of the metric tensor, respectively. We also report on the behavior of geodesic paths on the parameter manifold used to gain insight into the dynamics of PTs. Going further, we survey measures of complexity arising in the geometric framework. In particular, we quantify complexity of networks in terms of the Riemannian volume of the parameter space of a statistical manifold associated with a given network. We are also concerned with complexity measures that account for the interactions of a given number of parts of a system that cannot be described in terms of a smaller number of parts of the system. Finally, we investigate complexity measures of entropic motion on curved statistical manifolds that arise from a probabilistic description of physical systems in the presence of limited information. The Kullback-Leibler divergence, the distance to an exponential family and volumes of curved parameter manifolds, are examples of essential IG notions exploited in our discussion of complexity. We conclude by discussing strengths, limits, and possible future applications of IG methods to the physics of complexity.Comment: review article, 60 pages, no figure

    Anderson transition on the Bethe lattice: an approach with real energies

    Full text link
    We study the Anderson model on the Bethe lattice by working directly with propagators at real energies EE. We introduce a novel criterion for the localization-delocalization transition based on the stability of the population of the propagators, and show that it is consistent with the one obtained through the study of the imaginary part of the self-energy. We present an accurate numerical estimate of the transition point, as well as a concise proof of the asymptotic formula for the critical disorder on lattices of large connectivity, as given in [P.W. Anderson 1958]. We discuss how the forward approximation used in analytic treatments of localization problems fits into this scenario and how one can interpolate between it and the correct asymptotic analysis.Comment: Close to published versio
    • 

    corecore