3 research outputs found

    Towards Quantum Satellite Internetworking: A Software-Defined Networking Perspective

    Get PDF
    Recently, quantum computing and communications rapidly developed to interconnect heterogeneous quantum devices. In particular, some researchers have been performed about terrestrial quantum communications over typical optical fiber links. However, this technology is affected by extremely high losses that can be faced only through the deployment of several repeaters, which in turn involve impractical costs for end-to-end (E2E) route management. Quantum Satellite Networks (QSNs) can overcome the limitations of terrestrial optical networks, such as a remarkable signal attenuation over long distances and difficulty of intercontinental communications. The recent studies on quantum satellite communications motivated our research towards a Low Earth Orbit (LEO) quantum satellite backbone for interconnecting quantum on Earth Servers in order to achieve an unprecedented computational capacity. Specifically, our paper proposes a near optimum E2E path evaluation procedure allowing an efficient switching in order to maximize the entanglement generation rate. Indeed, this is one of the main issues that involve the Data Link Layer and the Network Layer of the Quantum Internet (QI) protocol stack, which is in its early standardization phase. In particular, the design of our approach is based on the Software-Defined Networking (SDN) paradigm with the aim of minimizing the number of hops for E2E connection and maximizing network capacity. Therefore, we compare distributed and centralized approaches in order to achieve a trade-off between performance and cost

    Optical transmittance based store and forward routing in satellite networks

    Get PDF
    Quantum computing will play a crucial part in our security infrastructure for the coming years. Quantum networks can consist of direct optical fiber or free-space links. With the use of satellite channels, we can create a quantum network with higher coverage than using optical fibers where the distances are limited due to the properties of the fiber. One of the highest drivers of cost for satellite networks, apart from the cost of the technology needed for such systems, are the costs of launching and maintaining said satellites. By minimizing the satellites needed for a well-functioning quantum network, we can decrease said network’s cost, thus enabling a cheaper quantum internet. In this paper, we present an optical transmittance-based routing algorithm with which it is possible to conduct successful quantum entanglement transfer between terrestrial nodes
    corecore