15,837 research outputs found

    The entanglement beam splitter: a quantum-dot spin in a double-sided optical microcavity

    Full text link
    We propose an entanglement beam splitter (EBS) using a quantum-dot spin in a double-sided optical microcavity. In contrast to the conventional optical beam splitter, the EBS can directly split a photon-spin product state into two constituent entangled states via transmission and reflection with high fidelity and high efficiency (up to 100 percent). This device is based on giant optical circular birefringence induced by a single spin as a result of cavity quantum electrodynamics and the spin selection rule of trion transition (Pauli blocking). The EBS is robust and it is immune to the fine structure splitting in a realistic quantum dot. This quantum device can be used for deterministically creating photon-spin, photon-photon and spin-spin entanglement as well as a single-shot quantum non-demolition measurement of a single spin. Therefore, the EBS can find wide applications in quantum information science and technology.Comment: 7 pages, 5 figure

    Strain-tunable entangled-light-emitting diodes with high yield and fast operation speed

    Get PDF
    Triggered sources of entangled photons play crucial roles in almost any existing protocol of quantum information science. The possibility to generate these non-classical states of light with high speed and using electrical pulses could revolutionize the field. Entangled-light-emitting-diodes (ELEDs) based on semiconductor quantum dots (QDs) are at present the only devices that can address this task 5. However, ELEDs are plagued by a source of randomness that hampers their practical exploitation in the foreseen applications: the very low probability (~10-2) of finding QDs with sufficiently small fine-structure-splitting for entangled-photon-generation. Here, we overcome this hurdle by introducing the first strain-tunable ELEDs (S-ELEDs) that exploit piezoelectric-induced strains to tune QDs for entangled-photon-generation. We demonstrate that up to 30% of the QDs in S-ELEDs emit polarization-entangled photon pairs with entanglement-fidelities as high as f+ = 0.83(5). Driven at the highest operation speed of 400 MHz ever reported so far, S-ELEDs emerge as unique devices for high-data rate entangled-photon applications.Comment: 28 pages in total, including supplementary information. 5 figure

    Oscillating photonic Bell state from a semiconductor quantum dot for quantum key distribution

    Full text link
    An on-demand source of bright entangled photon pairs is desirable for quantum key distribution (QKD) and quantum repeaters. The leading candidate to generate entangled photon pairs is based on spontaneous parametric down-conversion (SPDC) in a non-linear crystal. However, there exists a fundamental trade-off between entanglement fidelity and efficiency in SPDC sources due to multiphoton emission at high brightness, which limits the pair extraction efficiency to 0.1% when operating at near-unity fidelity. Quantum dots in photonic nanostructures can in principle overcome this trade-off; however, the quantum dots that have achieved entanglement fidelities on par with SPDC sources (99%) have poor pair extraction efficiencies of 0.01%. Here, we demonstrate a 65-fold increase in the pair extraction efficiency compared to quantum dots with equivalent peak fidelity from an InAsP quantum dot in a photonic nanowire waveguide. We measure a raw peak concurrence and fidelity of 95.3% ±\pm 0.5% and 97.5% ±\pm 0.8%, respectively. Finally, we show that an oscillating two-photon Bell state generated by a semiconductor quantum dot can be utilized to establish a secure key for QKD, alleviating the need to remove the quantum dot energy splitting of the intermediate exciton states in the biexciton-exciton cascade.Comment: 24 pages (7 main body, excluding references plus 14 supplemental information) and 4 main body figure

    The Quantum Reverse Shannon Theorem based on One-Shot Information Theory

    Full text link
    The Quantum Reverse Shannon Theorem states that any quantum channel can be simulated by an unlimited amount of shared entanglement and an amount of classical communication equal to the channel's entanglement assisted classical capacity. In this paper, we provide a new proof of this theorem, which has previously been proved by Bennett, Devetak, Harrow, Shor, and Winter. Our proof has a clear structure being based on two recent information-theoretic results: one-shot Quantum State Merging and the Post-Selection Technique for quantum channels.Comment: 30 pages, 4 figures, published versio
    corecore