7 research outputs found

    Post-quantum security of hash functions

    Get PDF

    Post-quantum security of hash functions

    Get PDF
    The research covered in this thesis is dedicated to provable post-quantum security of hash functions. Post-quantum security provides security guarantees against quantum attackers. We focus on analyzing the sponge construction, a cryptographic construction used in the standardized hash function SHA3. Our main results are proving a number of quantum security statements. These include standard-model security: collision-resistance and collapsingness, and more idealized notions such as indistinguishability and indifferentiability from a random oracle. All these results concern quantum security of the classical cryptosystems. From a more high-level perspective we find new applications and generalize several important proof techniques in post-quantum cryptography. We use the polynomial method to prove quantum indistinguishability of the sponge construction. We also develop a framework for quantum game-playing proofs, using the recently introduced techniques of compressed random oracles and the One-way-To-Hiding lemma. To establish the usefulness of the new framework we also prove a number of quantum indifferentiability results for other cryptographic constructions. On the way to these results, though, we address an open problem concerning quantum indifferentiability. Namely, we disprove a conjecture that forms the basis of a no-go theorem for a version of quantum indifferentiability

    Quantum indistinguishability of random sponges

    Get PDF
    In this work we show that the sponge construction can be used to construct quantum-secure pseudorandom functions. As our main result we prove that random sponges are quantum indistinguishable from random functions. In this setting the adversary is given superposition access to the input-output behavior of the construction but not to the internal function. Our proofs hold under the assumption that the internal function is a random function or permutation. We then use this result to obtain a quantum-security version of a result by Andreeva, Daemen, Mennink, and Van Assche (FSE'15) which shows that a sponge that uses a secure PRP or PRF as internal function is a secure PRF. This result also proves that the recent attacks against CBC-MAC in the quantum-access model by Kaplan, Leurent, Leverrier, and Naya-Plasencia (Crypto'16) and Santoli, and Schaffner (QIC'16) can be prevented by introducing a state with a non-trivial inner part. The proof of our main result is derived by analyzing the joint distribution of any q input-output pairs. Our method analyzes the statistical behavior of the considered construction in great detail. The used techniques might prove useful in future analysis of different cryptographic primitives considering quantum adversaries. Using Zhandry's PRF/PRP switching lemma we then obtain that quantum indistinguishability also holds if the internal block function is a random permutation

    Quantum Indistinguishability of random sponges

    No full text
    In this work we show that the sponge construction can be used to construct quantum-secure pseudorandom functions. As our main result we prove that random sponges are quantum indistinguishable from random functions. In this setting the adversary is given superposition access to the input-output behavior of the construction but not to the internal function. Our proofs hold under the assumption that the internal function is a random function or permutation. We then use this result to obtain a quantum-security version of a result by Andreeva, Daemen, Mennink, and Van Assche (FSE’15) which shows that a sponge that uses a secure PRP or PRF as internal function is a secure PRF. This result also proves that the recent attacks against CBC-MAC in the quantum-access model by Kaplan, Leurent, Leverrier, and Naya-Plasencia (Crypto’16) and Santoli, and Schaffner (QIC’16) can be prevented by introducing a state with a non-trivial inner part. The proof of our main result is derived by analyzing the joint distribution of any q input-output pairs. Our method analyzes the statistical behavior of the considered construction in great detail. The used techniques might prove useful in future analysis of different cryptographic primitives considering quantum adversaries. Using Zhandry’s PRF/PRP switching lemma we then obtain that quantum indistinguishability also holds if the internal block function is a random permutation

    Quantum Indistinguishability of random sponges

    No full text
    \u3cp\u3eIn this work we show that the sponge construction can be used to construct quantum-secure pseudorandom functions. As our main result we prove that random sponges are quantum indistinguishable from random functions. In this setting the adversary is given superposition access to the input-output behavior of the construction but not to the internal function. Our proofs hold under the assumption that the internal function is a random function or permutation. We then use this result to obtain a quantum-security version of a result by Andreeva, Daemen, Mennink, and Van Assche (FSE’15) which shows that a sponge that uses a secure PRP or PRF as internal function is a secure PRF. This result also proves that the recent attacks against CBC-MAC in the quantum-access model by Kaplan, Leurent, Leverrier, and Naya-Plasencia (Crypto’16) and Santoli, and Schaffner (QIC’16) can be prevented by introducing a state with a non-trivial inner part. The proof of our main result is derived by analyzing the joint distribution of any q input-output pairs. Our method analyzes the statistical behavior of the considered construction in great detail. The used techniques might prove useful in future analysis of different cryptographic primitives considering quantum adversaries. Using Zhandry’s PRF/PRP switching lemma we then obtain that quantum indistinguishability also holds if the internal block function is a random permutation.\u3c/p\u3

    Quantum indistinguishability of random sponges

    No full text
    In this work we show that the sponge construction can be used to construct quantum-secure pseudorandom functions. As our main result we prove that random sponges are quantum indistinguishable from random functions. In this setting the adversary is given superposition access to the input-output behavior of the construction but not to the internal function. Our proofs hold under the assumption that the internal function is a random function or permutation. We then use this result to obtain a quantum-security version of a result by Andreeva, Daemen, Mennink, and Van Assche (FSE'15) which shows that a sponge that uses a secure PRP or PRF as internal function is a secure PRF. This result also proves that the recent attacks against CBC-MAC in the quantum-access model by Kaplan, Leurent, Leverrier, and Naya-Plasencia (Crypto'16) and Santoli, and Schaffner (QIC'16) can be prevented by introducing a state with a non-trivial inner part.\u3cbr/\u3e\u3cbr/\u3eThe proof of our main result is derived by analyzing the joint distribution of any q input-output pairs. Our method analyzes the statistical behavior of the considered construction in great detail. The used techniques might prove useful in future analysis of different cryptographic primitives considering quantum adversaries. Using Zhandry's PRF/PRP switching lemma we then obtain that quantum indistinguishability also holds if the internal block function is a random permutation. \u3cbr/\u3
    corecore