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Abstract

In this work we show that the sponge construction can be used to construct quantum-
secure pseudorandom functions. As our main result we prove that random sponges are
quantum indistinguishable from random functions. In this setting the adversary is given
superposition access to the input-output behavior of the construction but not to the internal
function. Our proofs hold under the assumption that the internal function is a random
function or permutation. We then use this result to obtain a quantum-security version of
a result by Andreeva, Daemen, Mennink, and Van Assche (FSE’15) which shows that a
sponge that uses a secure PRP or PRF as internal function is a secure PRF. This result also
proves that the recent attacks against CBC-MAC in the quantum-access model by Kaplan,
Leurent, Leverrier, and Naya-Plasencia (Crypto’16) and Santoli, and Schaffner (QIC’16) can
be prevented by introducing a state with a non-trivial inner part.

The proof of our main result is derived by analyzing the joint distribution of any q input-
output pairs. Our method analyzes the statistical behavior of the considered construction in
great detail. The used techniques might prove useful in future analysis of different crypto-
graphic primitives considering quantum adversaries. Using Zhandry’s PRF/PRP switching
lemma we then obtain that quantum indistinguishability also holds if the internal block
function is a random permutation.
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1 Introduction

Originally introduced in the context of cryptographic hash functions, the sponge construction [2]
became one of the most widely used constructions in symmetric cryptography. Consequently,
sponges get used in keyed constructions, including message authentication codes (MAC), stream
ciphers, and authenticated encryption (AE), see e.g. [5, 4, 7, 15, 18, 1, 11]. For all these
applications it is either necessary or at least sufficient for security if a secretly keyed sponge is
indistinguishable from a random function. That this is indeed the case was already shown in the
original security proof for the sponge construction [3] where cryptographic sponges were shown
to be indifferentiable from random functions. This result is widely applicable and consequently
was followed up with several improved bounds for specific applications. Recent works [15, 1,
11] improved the bound for the setting of indistinguishability of secretly keyed sponges.

While these results show the applicability of the sponge construction in today’s computing
environment, they leave open the question of its applicability in a future post-quantum setting
where adversaries have access to quantum computers. Such an attacker can for example run
Shor’s algorithm [20] to break the security of constructions based on the RSA or discrete-
logarithm problem. While such constructions are hardly ever considered for practical symmetric
cryptography due to their slow operations, the impact of quantum adversaries goes beyond
Shor’s algorithm. Conventional security proofs, especially in idealized models, might break
down in the light of quantum attackers who are allowed to ask queries in superposition [8].
Going even further, allowing adversaries superposition access to secretly keyed primitives, it
was shown that several well known MACs and encryption schemes, including CBC-MAC and
the Even-Mansour block cipher become insecure [14, 12, 19]. While these latter attacks are not
applicable in the post-quantum setting, they are indications that secret-key cryptography does
not trivially withstand quantum adversaries and that it is necessary to study the security of
symmetric cryptography in the post-quantum setting.

In this work we do exactly this: We study the security of secretly keyed sponges against
quantum adversaries.

Sponges. The sponge construction [2] is an eXtendable Output Function (XOF) that maps
arbitrary-length inputs to outputs of a length specified by an additional input. The construction
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operates on an (r+c)-bit state. The parameter r is called the rate and the parameter c is called
the capacity. The first r bits of the state are called the outer part or outer state, the remaining
c bits are called the inner part or inner state. The sponge uses an internal function f mapping
(r+ c)-bit strings to (r+ c)-bit strings. To process a message consisting of several r-bit blocks,
the sponge alternates between mixing a new message block into the outer state and applying
f , as shown in Figure 1. When all message blocks are processed (i.e. absorbed into the internal
state) the sponge can be squeezed to produce outputs by alternating between applying f and
outputting the outer state. We write Spongef for the sponge using f as internal function.

0r

0c

⊕

M1

f
⊕

M2

f
⊕

M3

f

Z1

f

Z2

Absorbing phase Squeezing phase

Input: M = M1‖M2‖M3 Output: Z = Z1‖Z2

Figure 1: A scheme illustrating the sponge construction.

Sponges can be keyed in several ways. For example, the state can be initialized with the
key, referred to as root-keyed sponge in [1]. Another option is to just apply the sponge on the
concatenation of key and message. This was called the keyed sponge in [4] and the outer-keyed
sponge in [1]. The last and for us most relevant concept is keying the sponge by replacing f with
a keyed function fK . For the special case of fK being a single-key Even-Mansour construction
this was called E-M keyed sponge construction in [10] and later the inner-keyed sponge in [1].
We refer to the general case for any keyed function fK as keyed-internal-function sponge.

Our results. As main result, we prove that the sponge construction using a random function or
permutation is quantumly indistinguishable from a random function (see Theorems 8 and 16).
This result can be used to obtain a quantum version of Theorem 1 from [1] (see Theorem 12)
which states that the indistinguishability of keyed-internal-function sponges can be derived
from the quantum-PRF-security (or quantum-PRP-security in case of a block-cipher) of the
keyed internal function. Thereby we not only provide a proof for the security of keyed-internal-
function sponges in the post-quantum setting, but even in the stronger quantum settings where
the adversary gets full quantum-access to the keyed-internal-function sponge, i.e we prove that
keyed-internal-function sponges are quantum PRFs.

Another implication of our result is that the quantum attacks against CBC-MAC mentioned
above can be prevented using a state with a non-trivial inner part. The authors of the attack
already noted1 that their attack does not work in this case. More specifically, CBC-MAC can
be viewed as full-width sponge (where the state has no inner part, i.e., the capacity is 0). On
the other hand, a CBC-MAC where all message blocks are padded with 0c and the output is
truncated to the first r bits can be viewed as an keyed-internal-function sponge. Hence, our
result applies and shows that the quantum attacks by Kaplan, Leurent, Leverrier, and Naya-
Plasencia [12] and Santoli, and Schaffner [19] using Simon’s algorithm are not applicable any
longer. Even more, our result proves that this little tweak of CBC-MAC indeed results in a
quantum secure MAC.

In Appendix A we show a direct proof of indistinguishability for f being a random permuta-
tion. In this proof we state and prove Lemma 19 that generalizes the average case polynomial

1See slide 16 (page 26) of their Crypto 2016 presentation available at https://who.rocq.inria.fr/Gaetan.

Leurent/files/Simon_CR16_slides.pdf.
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method to allow for functions that are not necessarily polynomials but are close to one; this
result is not necessary to achieve the main goal of the paper but might be useful in other works
using similar techniques.
A limitation. The authors of [1] use their Theorem 1 to show security of inner-keyed sponges
using the PRP-security of single-key Even-Mansour. Their result does not carry over to the
quantum setting as Even-Mansour is vulnerable in the quantum setting [14]. This does not lead
an actual attack on inner-keyed sponges in the quantum setting. The attack needs access to
the full input to the Even-Mansour cipher, which is never the case for inner-keyed sponges as
long as a non-trivial inner state is used. However, the attack on Even-Mansour does render the
modular proof strategy not applicable for inner-keyed sponges.
Our approach. The main technical contribution of our work is a proof that the probability for
any given input-output behavior of Spongef is a polynomial in the capacity of the sponge. This
observation allows us then to apply the average-case polynomial method of [22] (see Theorem 4
below).

In more detail, recall that the capacity of a Spongef is the size of the inner state (there
are 2c possible inner states for a sponge as in Figure 1). If the capacity of a sponge increases,
it becomes less and less likely that there are collisions in the inner state. Hence for infinite
capacity, the inner states are unique and so the internal functions are called on unique inputs
and therefore, the sponge behaves like a random function. Our proof formalizes this intuition
by carefully analyzing the probabilities for q given input-output values of the sponge in terms
of the capacity. We show that these probabilities are in fact polynomials in the inverse of the
capacity of degree at most q times the length of the input-output values. We refer to Lemma 9
for the formal statement.

By establishing the capacity as this crucial parameter, we fit directly into the proof technique
from [22] that uses approximating polynomials of low degree to show closeness of distributions
and in turn small quantum distinguishing advantage. By the PRF/PRP switching lemma
from [23], quantum indistinguishability also holds for the case of f being a random permutation.
In the appendix, we provide an alternative proof for this case by generalizing the proof technique
of [22] to the case of permutations.

Organization. Section 2 introduces the definition of quantum indistinguishability and other
notions used throughout this work. In Section 3 we extend the above informal discussion of
the sponge construction with a more formal description. At the end of the section we show
that Spongef is indistinguishable from a random oracle in the conventional-access setting (in
contrast to the quantum-access model). In Section 4 we state the main result of our paper as well
as several derived results. Section 5 contains an example proof valid for limited distinguishers
but giving sufficient details to understand our approach and verify correctness without all the
particulars of the full proof. Section 6 contains the proof of Lemma 9, the main technical result
of this work. The case of random permutations is covered in Section 7. We conclude the paper
with Section 8 discussing some open problems related to the problem we analyze and related
work.

2 Preliminaries and Tools

In the Symbol Index 9 we list the most important notation used in our paper. We use
small caps for algorithms, CAPITAL letters for strings, CAPITAL and boldface for arrays
of strings. lower case, italic letters denote parameters and counters. Functions are denoted
by lower case boldface letters. Sets are denoted with CAPIT AL calligraphic letters. Finally
distributions are denoted with CAPITAL letters using fraktur font. The general guideline for
denoting elements of different sets is that we use a different letter together with indices. So if
A is some set then Ai is the i-th element of that set. If we write Ai that means that the set Ai
is a member of some family.
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2.1 Quantum threat model

The quantum threat model we consider allows the adversary to query oracles in superposition.
Oracles are modeled as unitary operators Uh acting on computational basis states as follows

Uh|X,Y 〉 7→ |X,Y ⊕ h(X)〉. (1)

The adversary is considered to have access to a fault-tolerant (perfect) quantum computer. We
do not provide more details on quantum computing as we do not directly require it here, but
we refer to [17] instead.

2.2 Distributions

A distribution D on a set X is a function D : X → [0, 1] such that
∑

X∈X D(X) = 1. We denote
sampling X from X according to D by X ← D. YX denotes the set of functions {f : X → Y}. If
D is a distribution on Y then DX denotes a distribution on YX where the output for each input

is chosen independently according to D. By
$← X we denote sampling uniformly at random

from the set X .

2.3 Classical and Quantum Indistinguishability

By classical indistinguishability we mean a feature of two distributions that are hard to dis-
tinguish if only polynomially many classical queries are allowed. The mentioned polynomial is
evaluated on the security parameter. Note however that we have not yet specified it. For now
though we leave it implicit, the security parameter will be specified for the particular construc-
tion we are going to analyze. In the following we are going to use functions N→ R that for big
enough argument are smaller than any inverse polynomial, they are called negligible functions.

Definition 1 (Classical Indistinguishability). Two distributions D1 and D2 over a set YX
are computationally classically indistinguishable if no quantum algorithm A can distinguish D1

from D2 using a polynomial number of classical queries. That is, for all A, there is a negligible
function ε such that ∣∣∣∣ P

g←D1

[Ag(.) = 1]− P
g←D2

[Ag(.) = 1]

∣∣∣∣ ≤ ε. (2)

We write Ag to denote that adversary A has classical oracle access to g. We will use the
following generalization of the above definition to specify our goal.

Definition 2 (Quantum Indistinguishability [22]). Two distributions D1 and D2 over a set YX
are computationally quantumly indistinguishable if no quantum algorithm A can distinguish D1

from D2 using a polynomial number of quantum queries. That is, for all A, there is a negligible
function ε such that

∣∣∣∣ P
g←D1

[
A|g〉(.) = 1

]
− P

g←D2

[
A|g〉(.) = 1

]∣∣∣∣ ≤ ε. (3)

We write A|g〉 to denote that adversary A has quantum oracle access to g, i.e. she can query
g on a superposition of inputs.

In what follows the setting that we focus on is indistinguishability from a random oracle.
The first distribution is the one analyzed and the other is the uniform distribution over the set
of all functions from X to Y, i.e. YX . Sampling a uniformly random function is denoted by
$← YX .
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2.4 Main tools

In this section we describe the proof technique—based on approximating polynomials—that
proves useful when dealing with notions like quantum indistinguishability. In the following
[q] := {1, 2, . . . , q}.

Theorem 3 (Theorem 3.1 in [24]). Let A be a quantum algorithm making q quantum queries to
an oracle h : X → Y. If we draw h from some distribution D, then the quantity Ph←D[A|h〉() =
1] is a linear combination of the quantities Ph←D[∀i ∈ [2q] : h(Xi) = Y i], where ∀i ∈ [2q] :
(Xi, Y i) ∈ X × Y.

The intuition behind the above theorem is that with q queries the amplitudes of the quantum
state of the algorithm depend on at most q input-output pairs. The probability of any outcome
is a linear combination of squares of amplitudes, that is why we have 2q input-output pairs
in the probability function. Finally as the probability of any measurement depends on just 2q
input-output pairs the same holds for the algorithm’s output probability. All the information
about h comes from the queries A made.

We use the above theorem together with statements about approximating polynomials to
connect the probability of some input-output behavior of a function from a given distribution
with the probability of the adversary distinguishing two distributions.

Theorem 4 (Theorem 7.3 in [22]). Fix q, and let Ft be a family of distributions on YX indexed
by t ∈ Z+∪{∞}. Suppose there is an integer d such that for every 2q pairs ∀i ∈ [2q] : (Xi, Y i) ∈
X × Y, the function p(1/t) = Ph←Ft

[
∀i ∈ [2q] : h(Xi) = Y i

]
is a polynomial of degree at most

d in 1/t. Then for any quantum algorithm A making at most q quantum queries, the output
distribution under Ft and F∞ are π2d3/3t-close

∣∣∣∣ P
h←Ft

[
A|h〉() = 1

]
− P

h←F∞

[
A|h〉() = 1

]∣∣∣∣ <
π2d3

6t
. (4)

This theorem is an average case version of the polynomial method often used in complexity
theory. If the polynomial approximating the ideal behavior of h ← F∞ is of low degree the
distance between polynomials must be small.

3 The Sponge Construction

3.1 Definition of Sponges

While an informal explanation of sponges was given in the introduction, we now give a more
formal definition.

We define a sponge-compliant padding as:

Definition 5 (Definition 1 in [6]). A padding rule is sponge-compliant if it never results in the
empty string and if it satisfies the following criterion:

∀ν ≥ 0 ∀M,M′ ∈ {0, 1}∗ : M 6= M′ ⇒M‖pad(|M|) 6= M′‖pad(|M′|)‖0νr, (5)

where ‖ denotes concatenation of bit strings.

A formal definition of the construction is provided as Algorithm 1. Note that ⊕ denotes the
bitwise XOR, |P|r denotes the number of blocks of length r in P, Pi is the i-th block of P and
bZc` are the first ` bits of Z.
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Algorithm 1: Spongef [pad, r]

Input : M ∈ {0, 1}∗, ` ≥ 0.
Output: Z ∈ {0, 1}`

1 P := M‖pad[r](|M|), and S := 0r+c.
2 for i = 0 to |P|r − 1 do // Absorbing phase

3 S = S ⊕ (Pi‖0c)
4 S = f(S)

5 Z := bScr // Squeezing phase

6 while |Z| < ` do
7 S = f(S)
8 Z = Z‖bScr
9 Output bZc`

3.2 Classical indistinguishability of random Sponges

In the following we state the indistinguishability result in the classical domain. We use the
following notation for a set of arbitrary finite-length bit strings:

{0, 1}∗ :=
⋃

l≥0

{0, 1}l, (6)

we usually denote this set by M. Before we proceed let us define what we mean by a random
oracle.

Definition 6 (Random Oracle). A random oracle is sampled from a distribution R on functions
from M× N to M, where M := {0, 1}∗. We define h← R as follows:

• Choose g uniformly at random from {g :M→ {0, 1}∞}, where by {0, 1}∞ we denote the
set of infinitely long bit-strings.

• For each (X, `) ∈ M × N set h(X, `) := bg(X)c`, that is output the first ` bits of the
output of g.

Theorem 7 (Classical indistinguishability of Sponge). If f is a random transformation or
a random permutation then Spongef defined in Alg. 1 is classically indistinguishable from
a random oracle. Namely for all quantum algorithms A making polynomially many classical
queries there is a negligible function ε such that

∣∣∣∣∣ P
f

$←SS

[
ASpongef (.) = 1

]
− P

h←R
[Ag(.) = 1]

∣∣∣∣∣ ≤ ε, (7)

where S = {0, 1}r+c, and R is defined according to Definition 6.

Proof. The proof follows closely the proof of Theorem 2 of [2]. Even though we give more power
to the adversary giving her access to a quantum computer, the queries are considered to be
classical. All arguments in the proof of Bertoni and others depend only on the queries made
by the adversary and not her computing power. For that reason we can use the result of [16],
which states that a query-based classical result easily translates to the quantum case if we do
not change the query model.
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4 Random Sponges are quantumly indistinguishable from ran-
dom oracles

We want to show that the distribution corresponding to random sponges is quantumly indistin-
guishable from a random oracle. We can define a family of distributions indexed by the security
parameter that intuitively gets closer to a random oracle with increasing parameter. For that
reason Theorem 4 is a perfect theoretical tool to be used. The relevant tasks that remain are
to identify the family of distributions that correspond to our figure of merit, to show that in
fact the most secure member of the family with t = ∞ is a random oracle, and to prove that
the assumptions of Theorem 4 are fulfilled.

The security parameter in Sponge is the capacity; we parametrize the family of random
sponges by the size of the inner state space t = 2c. Intuitively speaking, for c → ∞ each
evaluation of the internal function is done with a different inner state. In this case irrespective
of the input, the output is a completely random string, which is the definition of a random
oracle (RO). Hence we conclude that we identified a family of distributions that is well suited
to be used with Theorem 4. If we show that indeed for t =∞ the member of the family is the
random oracle we have that:

F2c is quantumly indistinguishable from F∞

⇒ random sponge is quantumly indisitinguishable from RO. (8)

We are left with the task to prove the left-hand side of the above statement. The assumption
of Theorem 4 is that the probability of witnessing any input-output behavior on q queries is a
polynomial in 1/2c. At this point we stumble upon a problem with the set of indices. If we want
to use the statement about closeness of polynomials we have to show that p is a polynomial
for any inverse integer and not only for 2−c. This difficulty brings us to the definition of the
generalized sponge construction SpGen. The only difference between SpGen and Sponge is
the space of inner states, we change it from {0, 1}c to any finite-size set C. This modification
solves the problem of defining distributions for any integer, not only powers of 2. It remains to
prove that p(|C|−1) is in fact a polynomial in |C|−1, where by |C| we denote cardinality of the
set. With that statement proven we fulfill the assumptions of Theorem 4 and show quantum
indistinguishability of SpGen, which implies the same for Sponge.

In Algorithm 2 we present a generalization of Sponge. The set of inner states is denoted
by C and can be any finite set, to be specified by the user. The internal function is generalized
to any map ϕf : {0, 1}r × C → {0, 1}r × C. In the following we denote the part of the entire
state S in {0, 1}r by S̄ and call it the outer part and the part in C by Ŝ, we will refer to it as
the inner part of a state.

Let us now formally state the main claim of this paper. We are going to focus on the internal
function being modeled as a random function, in Section 7 though, we are going to cover the
case of random permutations.

Theorem 8. SpGenϕf
for random ϕf is quantumly indistinguishable from a random oracle.

More concretely, for all quantum algorithms A making at most q quantum queries to SpGen,
such that the input length is at most m · r bits long and the output length is at most z · r bits
long,

∣∣∣∣∣ P
ϕf

$←SS

[
A|SpGenϕf

〉(.) = 1
]
− P

h←R

[
A|h〉(.) = 1

]∣∣∣∣∣ <
π2

6
η3|C|−1, (9)

where η := 2q(m+ z − 2) and R is defined according to Definition 6. The domain is defined as
S = {0, 1}r × C for some non-empty finite set C.

Before we prove the above theorem we state the main technical lemma.
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Algorithm 2: SpGenϕf
[pad, r, C]

Input : M ∈ {0, 1}∗, ` ≥ 0.
Output: Z ∈ {0, 1}`

1 P := pad(M)
2 S := (0r, IC) ∈ {0, 1}r × C. // IC-initial value

3 for i = 1 to |P|r do // Absorbing phase

4 S := (S̄ ⊕Pi, Ŝ)
5 S := ϕf (S)

6 Z := S̄ // Squeezing phase

7 while |Z| < ` do
8 S := ϕf (S)
9 Z := Z‖S̄

10 Output bZc`

Lemma 9. For a fixed q and for every (M,Z) :=
(
(Mi,Zi)

)
i∈[2q]

, where ∀i ∈ [2q] : (Mi,Zi) ∈
{0, 1}∗ × {0, 1}∗, such that ∀i ∈ [2q] : |Mi|r ≤ m, |Zi|r ≤ z, it holds that

(i) the probability function is a polynomial in |C|−1 of degree η

P
[
∀i ∈ [2q] : SpGenϕf

(Mi, `i) = Zi
]

=

η∑

j=0

aj |C|−j =: p(|C|−1) (10)

(ii) and the coefficient

a0 =

2q∏

i=1

δ(M,Z, i)2−|Z
i|. (11)

All coefficients aj are real, and the degree of the polynomial equals η := 2q(m + z − 2). In the
equation describing a0 we use δ(M,Z, i) to denote a Boolean function that is 0 if Mi is input
more than once and Zi is not the longest output of SpGen on Mi or is inconsistent with other
outputs (inputting the same message for the second time should yield the same output) and is 1
otherwise.

The full proof is presented in Section 6.

Proof idea. Our goal is to explicitly evaluate P
[
∀i ∈ [2q] : SpGenϕf

(Mi, `i) = Zi
]
. We base

all of our discussion on two facts: SpGen has a structure that we know and it involves multiple
evaluations of the internal function ϕf . ϕf is a random function with well specified probability
of yielding some output on a given input. The main idea of our approach is to extract terms
like P[ϕf (S1) = S2] for some states S1, S2 from the overall probability expression and evaluate
them.

Let us go through a more detailed plan of the proof. Fix (M,Z) and set `i :=
|Zi|. In the first step we include all intermediate states in the probabilistic event(
∀i ∈ [2q] : SpGenϕf

(Mi, `i) = Zi
)
. We write explicitly all inner states and outer states not

specified by the input-output pairs (M,Z). Next we rewrite the full probability expression in
the form

∑∏
P[ϕf (S1) = S2 | . . . ]. The sum comes from the fact that there are many possible

intermediate states that yield the given input-output behavior. The product is the result of
using Bayes’ rule to isolate a single evaluation of ϕf in the probability. To correctly evaluate
the summands we need to analyze all states in P[ϕf (S1) = S2 | . . . ] from the perspective of
uniqueness—we say a state is unique if it is input to ϕf just a single time. Given a specific
setup of unique states in all 2q evaluations of SpGen we can easily evaluate the probabilities,
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as the only thing we need to know is that ϕf is random. The final step of the proof is to
calculate the number of states in the sum. We sum over all values of states that fulfill the con-
straints of

(
∀i ∈ [2q] : SpGenϕf

(Mi, `i) = Zi
)

and ϕf being a function. The previous analysis
of uniqueness of states makes it easier to include the latter constraint; non-unique states have
predetermined outputs under ϕf decreasing the number of possible states. After those steps we
end up with an explicit expression for P

[
∀i ∈ [2q] : SpGenϕf

(Mi, `i) = Zi
]
, which allows us to

show that p is a polynomial of the claimed degree and its limit in t→∞, i.e. the coefficient a0

is the probability of uniformly random outputs.

Proof of Theorem 8. Let us define a family Ft indexed by t ∈ N∪{∞}, t > 0. Ft is a distribution
on functions from M× N to M, where M := {0, 1}∗. The family is additionally parametrized
by the choice of r ∈ N and a sponge-compliant padding function pad. We define h ← Ft as
follows:

• Choose ϕf uniformly at random from SS , where S := {0, 1}r × C and C is any finite set
of size t > 0.

• Use ϕf , C, the fixed r, and pad to construct SpGenϕf
[pad, r, C].

• For each (X, `) ∈M× N set h(X, `) := SpGenϕf
[pad, r, C](X, `).

To show that we defined Ft in the right way, let us analyze Eq. (8) from the point of view
of the newly defined distribution. On the one hand from our definition it follows that

P
h←Ft

[
A|h〉() = 1

]
= P

h←Ft

[
A|SpGenϕf

〉() = 1
]

= P
ϕf

$←SS

[
A|SpGenϕf

〉() = 1
]
, (12)

where the first equality follows from our definition of h and the second from the fact that all
randomness in Ft comes from choosing a random function ϕf . On the other hand if we take
t→∞ the internal function is going to be injective on its inner part. Namely ϕ̂f—the internal
function with its output restricted to the inner part—is injective. That implies a different inner
state in every evaluation of ϕf in SpGen what in turn implies a random and independent outer
part in every step of generating the output, formally

P
h←F∞

[
A|h〉() = 1

]
= P

h←R

[
A|h〉() = 1

]
. (13)

This intuition is formally captured by Statement (ii) of Lemma 9, where we state that in the
limit of |C| → ∞ the probability of getting particular outputs of SpGen is the same as for a
random oracle.

From the above discussion we get that
∣∣∣∣ P
h←Ft

[
A|h〉() = 1

]
− P

h←F∞

[
A|h〉() = 1

]∣∣∣∣ =

∣∣∣∣∣ P
ϕf

$←SS

[
A|SpGenϕf

〉() = 1
]
− P

h←R

[
A|h〉() = 1

]∣∣∣∣∣ , (14)

which is the crucial equality for using Theorem 4 to prove our statement. The last element of
the proof is the assumption about p being a polynomial and that is exactly the statement of
Lemma 9.

Quantum indistinguishability of commonly used sponges with binary state follows directly
from the general result.

Corollary 10. If f is a random function or a random permutation, then Spongef is quantumly
indistinguishable from a random oracle.

Proof. For a random function we use Theorem 8 and for a random permutation Theorem 16
and set C = {0, 1}c.
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4.1 Application to keyed-internal-function sponges

We show that Theorem 8 implies that keyed-internal-function sponges are indistinguishable
from a random oracle under quantum access if the used internal function is a quantum-secure
PRF (or if the internal function is a permutation, a quantum-secure PRP). This means that in
the case f is a quantum-secure pseudorandom function or permutation the sponge construction
is a quantum-secure pseudorandom function. For keyed primitives, indistinguishability from a
random oracle/permutation is exactly what we call pseudorandomness.

We first formally define quantum-secure pseudorandom functions (PRF) and pseudorandom
permutations (PRP).

Definition 11 (Quantum-secure PRF/PRP). Say f : K×S → S is a keyed function (permuta-
tion), then we say that f is a quantum-secure pseudorandom function (permutation) if for every
quantum algorithm running in polynomial time, there is a negligible function εPR such that

∣∣∣∣∣ P
K

$←K

[
A|fK〉(.) = 1

]
− P

g
$←SS

[
A|g〉(.) = 1

]∣∣∣∣∣ ≤ ε
PR(n), (15)

where n := blog |K|c and g is sampled uniformly from the set of functions (permutations) from
S to S. Below, we refer to εPR as advantage.

Now we state and prove a quantum version of Theorem 1 of [1] which formalizes the above
statement about quantum security of keyed-internal-function sponges. Note that we state the
theorem for the general sponge construction but thanks to Corollary 10 it holds for the regular
construction as well.

Theorem 12. If the internal function f used in SpGenf is a quantum-secure PRF/PRP with
advantage εPR, then the resulting keyed-internal-function sponge is a quantum-secure PRF with
advantage

∣∣∣∣∣ P
K

$←K

[
A|SpGenfK

〉(.) = 1
]
− P

g←R

[
A|g〉(.) = 1

]∣∣∣∣∣ ≤ ε
PR +

π2

6
η3|C|−1, (16)

where η := 2q(m + z − 2), q is the number of queries A makes to its oracle, m and z are as
defined in the statement of Thm. 8, and R is defined according to Definition 6.

Proof. We give the proof for f being a keyed function. The proof when f is a keyed permutation
is obtained by using Theorem 16 in place of Theorem 8 and restricting the sets from which g
and ϕf are drawn below to permutations.

We show that the advantage of any quantum adversary in distinguishing the keyed-internal-
function sponge from a random oracle is bound by its ability to distinguish f from a random
oracle (permutation, respectively) plus its ability to distinguish a random sponge from a random
oracle. In the following calculation we use the triangle inequality and the result of Theorem 8.

∣∣∣∣∣ P
K

$←K

[
A|SpGenfK

〉(.) = 1
]
− P

g←R

[
A|g〉(.) = 1

]∣∣∣∣∣

=

∣∣∣∣∣ P
K

$←K

[
A|SpGenfK

〉(.) = 1
]
− P

ϕf
$←SS

[
A|SpGenϕf

〉(.) = 1
]

+

P
ϕf

$←SS

[
A|SpGenϕf

〉(.) = 1
]
− P

g←R

[
A|g〉(.) = 1

]∣∣∣∣∣ (17)
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≤
∣∣∣∣∣ P
K

$←K

[
A|SpGenfK

〉(.) = 1
]
− P

ϕf
$←SS

[
A|SpGenϕf

〉(.) = 1
]∣∣∣∣∣

︸ ︷︷ ︸

≤

∣∣∣∣∣∣ P
K

$←K
[B|fK〉(.)=1]− P

ϕf
$←SS

[B|ϕf 〉(.)=1]

∣∣∣∣∣∣

+

∣∣∣∣∣ P
ϕf

$←SS

[
A|SpGenϕf

〉(.) = 1
]
− P

g←R

[
A|g〉(.) = 1

]∣∣∣∣∣
︸ ︷︷ ︸

Quantum Indistinguishability, Thm. 8 or 16

≤ εPR +
π2

3
η3|C|−1, (18)

where B is an adversary that uses A as a subroutine, simulating A’s oracle using its own oracle
and the sponge construction. B outputs the same output as A.

5 Example proof of Lemma 9

In this section we prove Lemma 9 in a setting limited enough that every step can be done in all
details. The main difficulty of our technique is of combinatorial nature, namely counting the
possible values of intermediate states in multiple evaluations of SpGen. In the full proof we
provide an algorithmic explanation of some steps but here we can execute these algorithms and
explicitly write down their outputs.

We want to show that the probability function describing the input-output behavior of
SpGen is a polynomial of bounded degree in |C|−1. By that we mean that the expression
for p(|C|−1) can be written as

∑
i ai|C|−i. The proof goes as follows: Firstly we expand the

event that on some inputs SpGen gives some outputs, this allows us to pinpoint the individual
evaluations of ϕf . Secondly we impose an order on the evaluations of the internal function;
which in turn allows us to exclude state values that would require ϕf to output different values
on the same input, calculate the probability of ϕf having particular input-output behavior, and
divide the set of state values in a way allowing to calculate its size. Finally we obtain a closed
expression for p(|C|−1).

The limitation we make in the example proof is to consider only single-query algorithms
(q = 1). We also restrict ourselves to a limited SpGen that allows only 2-block inputs and
always outputs a single r-bit block. As q = 1 the number of input-output pairs we need to
consider is 2. The array of inputs and outputs is (M,Z) = ((M1,Z1), (M2,Z2)) and for i ∈
{1, 2} : Mi = M i

1‖M i
2, Zi = Zi1. In the following example ϕf : S → S, where S := {0, 1}r × C.

The probabilistic event we analyze throughout this section is

∀i ∈ [2] : SpGen(Mi) = Zi ⇔ ∀i ∈ [2] : ϕ̄f

(
ϕ̄f (M

i
1, IC)⊕M i

2, ϕ̂f (M
i
1, IC)

)
= Zi1, (19)

where by ϕ̄f : S → {0, 1}r and ϕ̂f : S → C we denote the first part and the second part of
the output of ϕf respectively. In the following paragraph we are going to make explicit all
inputs to ϕf . Throughout this section we will discuss two evaluations of SpGen which are
depicted in Fig. 2. In Figure 2 we show the two evaluations of SpGen we analyze. The values
of not-boxed-states are fixed by the requirement of inputs being M and outputs Z.

By M i
j we denote the j-th block of Mi, and similarly by Zij the j-th block of Zi. Note that

by including intermediate states we can further expand the above event. By intermediate states
we mean the value of the state of SpGen during calculation of SpGen(M). Namely

∀i :ϕ̄f

(
ϕ̄f (M

i
1, IC)⊕M2, ϕ̂f (M

i
1, IC)

)
= Zi1 ⇔

∀i :
∨

Ŝi
3∈C

ϕf

(
ϕ̄f (M

i
1, IC)⊕M2, ϕ̂f (M

i
1, IC)

)
= (Zi1, Ŝ

i
3). (20)
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0r S̄1
1⊕

IC

0rS̄2
1⊕

IC

S̄1
2 S̄1

2⊕

Ŝ1
2

S̄2
2 S̄2

2⊕

Ŝ2
2

S̄1
3 S̄1

3⊕

Ŝ1
3

S̄2
3 S̄2

3⊕

Ŝ2
3

ϕf ϕf

ϕf ϕf

⊕M1
1

⊕M1
2

⊕M2
1

⊕M2
2

= Z1
1

= Z2
1

Figure 2: Table showing the intermediate states of the limited SpGen. Boxed states are the
elements of ∇-c that do not have a fixed value across different ∇-c ∈ ∇-C(M,Z), the arrows
indicate the order in which Flag-Assign assigns flags.

We are using the upper index to count the number of the evaluation of SpGen. Note that
there is one inner state that we have not made explicit, the one being output by the first ϕf .
Following the above reasoning we get

∀i :
∨

Si
2∈{0,1}r×C

∨

Ŝi
3∈C

ϕf (M
i
1, IC) = Si2 ∧ ϕf (S̄

i
2 ⊕M i

2, Ŝ
i
2) = (Zi1, Ŝ

i
3), (21)

where Si2 = (S̄i2, Ŝ
i
2), we denote the above as

∀i :
∨

Si
2∈{0,1}r×C

∨

Ŝi
3∈C

ϕf (S
i
1⊕) = Si2 ∧ ϕf (S

i
2⊕) = (S̄i3, Ŝ

i
3),

where ∀i : Si1⊕ := (M i
1, IC) ∧ Si2⊕ := (S̄i2 ⊕M i

2, Ŝ
i
2) ∧ S̄i3 := Zi1. (22)

By adding the subscript ”⊕” we highlight that the state output by ϕf has been updated by
XORing the appropriate block of M. Up to this point we have expanded the initial event from
Eq. (19) to a form with all inputs and outputs of ϕf being explicit, namely ϕf (S1) = S2. From
now on we are going to denote the set of the states by ∇-c (read as ”nabla configuration”,
where the ∇ is suggested by the three values that can be seen as vertices of a triangle), which
we define as a matrix

∇-c :=




(
S̄1

1 S̄
1
1⊕

Ŝ1
1

) (
S̄1

2 S̄
1
2⊕

Ŝ1
2

) (
S̄1

3 S̄
1
3⊕

Ŝ1
3

)

(
S̄2

1 S̄
2
1⊕

Ŝ2
1

) (
S̄2

2 S̄
2
2⊕

Ŝ2
2

) (
S̄2

3 S̄
2
3⊕

Ŝ2
3

)



, (23)

where ∀i : Si1⊕ = (M i
1, IC) ∧ Si2⊕ = (S̄i2⊕M i

2, Ŝ
i
2) ∧ S̄i3 = Zi1 = S̄i3⊕; the constraints we impose

fix the input-output behavior of the two evaluations of SpGen. Nabla-configurations ∇-c are
matrices of triples but when we want to refer to a part of the triple in row i and column j of ∇-c

we are going to write Sij ∈ ∇-c. More formally Sij ∈ ∇-c ⇔ ∇-cij =

(
S̄ S̄⊕

Ŝ

)
∧ Sij = (S̄, Ŝ),

where by ∇-cij we denote the element of ∇-c in row i and column j, similarly for the second
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part of the state Sij⊕ = (S̄ij⊕, Ŝ
i
j), of the corresponding triple. We introduce this notation of

∇-c to capture possible values of the states in SpGen(Mi) that are consistent with (M,Z).
The set of all possible values of states in ∇-c is denoted by ∇-C(M,Z) (the set of nabla

configurations). The size of ∇-C(M,Z) is the number of different ∇-c for a particular (M,Z),

| ∇-C(M,Z) | = |({0, 1}r)2 × C4| = 22r · |C|4. (24)

In Figure 2 values of not-boxed-states are fixed by the requirement of inputs being M and
outputs Z. In what follows we analyze this set to find out how many possible values of states
correspond to each value of probability of seeing (∀i ∈ [2] : SpGen(Mi) = Zi). To better
understand our approach we should clarify the implicit equivalence between ∇-c—so values
of the internal states of SpGen—and ϕf—the function taken at random from SS . Note that
for every ϕf ∈ SS we have at most a single ∇-c, we say at most because some ϕf are not
consistent with the input-output pairs (M,Z). On the other hand for a single ∇-c we have
plenty of functions: all those that have input-output pairs consistent with values of states in
∇-c and any outputs on all inputs not present in ∇-c. Also note that there are many ∇-c that
will result in (∀i ∈ [2] : SpGen(Mi) = Zi). What we do is basically counting the number of
functions ϕf that will result in SpGen evaluating to Z on M and dividing it by the number of
all functions. The only difference is that we immediately simplify the result by not counting the
functions with behavior outside of our scope—limited to few (in this section four) evaluations.
This simplification is made easier by focusing on relevant values of inputs and outputs; on a
few rows of the evaluation tables of ϕf .

The events we take the OR of are disjoint, so in terms of probabilities we get

P
ϕf

$←SS
[∀i ∈ [2] : SpGen(Mi) = Zi] =

∑

S1
2 ,S

2
2 ,Ŝ

1
3 ,Ŝ

2
3

P
ϕf

$←SS
[∀i ∈ [2] : ϕf (S

i
1⊕) = Si2 ∧ϕf (S

i
2⊕) = (S̄i3, Ŝ

i
j)], (25)

where the sum is taken over S1
2 , S

2
2 ∈ S and Ŝ1

3 , Ŝ
2
3 ∈ C and S̄i1⊕, S̄

i
2⊕, S̄

i
3⊕ are constrained by

(M,Z). Now that we have exposed the individual evaluations of ϕf we can use the chain rule
to specify the order in which we analyze the evaluations of the internal function. This order
is only a tool for the analysis of the probability, not the actual time evolution. Note that the
probability on the right hand side of Eq. (25) is taken over a conjunction of events depending
only on a single evaluation of ϕf . The next step is to extract events with a single evaluation of
ϕf . We can do it simply by using Bayes’ formula and the chain rule,

P
ϕf

$←SS
[SpGen(M) = Z] =

∑

S1
2 ,S

2
2 ,Ŝ

1
3 ,Ŝ

2
3

P[∀i : ϕf (S
i
1⊕) = Si2 ∧ ϕf (S

i
2⊕) = (S̄i3, Ŝ

i
3)] (26)

=
∑

∇-c

P[∀i : ϕf (S
i
1⊕) = Si2 ∧ ϕf (S

i
2⊕) = Si3;∀i, j : Sij , S

i
j⊕ ∈ ∇-c]

=
∑

∇-c

P[ϕf (S
1
1⊕) = S1

2 ]

·P[ϕf (S
2
1⊕) = S2

2 | ϕf (S
1
1⊕) = S1

2 ]

·P[ϕf (S
1
2⊕) = S1

3 | ϕf (S
2
1⊕) = S2

2 ∧ ϕf (S
1
1⊕) = S1

2 ]

·P[ϕf (S
2
2⊕) = S2

3 | ϕf (S
1
2⊕) = S1

3 ∧ ϕf (S
2
1⊕) = S2

2 ∧ ϕf (S
1
1⊕) = S1

2 ], (27)

where in the last equation we have omitted ∀i, j : Sij , S
i
j⊕ ∈ ∇-c in each probability function.

We denote the order specified above by ”≺”.
We still cannot evaluate the above expression because we do not know if ϕf is queried on a

”fresh” input or not. First of all, note that thanks to conditioning on one event, we can treat
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(ϕf (S
1
1⊕) = S1

2) from the second factor in Eq. (27) as being prior to (ϕf (S
1
2⊕) = S1

3). Prior in
that case means that ϕf is sampled on S1

1⊕ before it is sampled on S2
1⊕. That implies, e.g., that

if S2
1⊕ = S1

1⊕ then the outputs have to be the same, otherwise the probability is 0. This is what
we mean when saying that an input is fresh or not. To separate a particular ∇-c with different
numbers of fresh states, we perform a procedure on each ∇-c that assigns flags to the states.
Flags mark whether the value of the state was previously input to ϕf or not. By performing
this procedure we want to divide ∇-C(M,Z) into subsets with the same probability—i.e. having
the same probability of sampling ϕf that yields a particular input-output behavior. Let us call
this procedure Flag-Assign. Running it also identifies impossible values of internal states,
calculates the probabilities of each transition, and divides ∇-C(M,Z) into sets of cardinalities
we can compute.

Algorithm Flag-Assign, see Alg. 4 in the next section, takes as input ∇-c and goes through
each state starting from the first column going down, then down from the top of the second
column and so on. The order in which Flag-Assign operates is depicted by arrows in Fig. 4.
If the value of the ”⊕” part of the state which is input to ϕf appears in ∇-c just once, the
algorithm assigns the flag ”u” to it, we call such states unique. If the value is not unique, i.e. it
appears in ∇-c more than once, the state that is encountered first is assigned the flag ”f” and
the rest of the states get the flag ”n”. We call states with the flag ”n” non-unique. Flag-Assign
also appends to each non-unique ”⊕”-state the output it should yield, i.e. the output of the
corresponding ”f” state. If the state in ∇-c that follows the considered state is different than
the claimed output we discard the whole configuration. We denote the set ∇-C(M,Z) without
states that conflict with ϕf being a proper map by p-∇-CF(M,Z) (set of p-nabla configurations
with flags, p emphasizes the fact that we have restricted ϕf to proper transformations). By a
proper map we mean that it does not output different states on the same input. Elements of
p-∇-CF(M,Z) are denoted by p-∇-cf (p-nabla configurations).

After running Flag-Assign on every ∇-c ∈ ∇-C(M,Z) and discarding the configurations
with bad output states we still need to add more details to our picture. The procedure we
describe below is depicted in Figure 3. Firstly we discriminate between p-∇-cf with different
numbers of unique states. The total number of flags is 4, the final states are not inputs to ϕf

and are not assigned a flag. We denote the number of unique states by u, the number of states
that are non-unique but appear for the first time is f , and the number of non-unique states is n.
Note that u+f+n = 4. In general there are 5 possible sets of those numbers in the case of q = 1
and lengths of the input and output strings we specified. These are as follows: (u = 4, f = 0),
(u = 2, f = 1), (u = 1, f = 1), (u = 0, f = 2), and (u = 0, f = 1). Secondly we discriminate
between different placements of flags. For each setup there are several possible placements of
flags. For (u = 4, f = 0) and (u = 0, f = 1), flags can be set in only one configuration. If we
have 2 unique states and the setup is (u = 2, f = 1) then there are 6 possible configurations of
flags. For (u = 1, f = 1) there are 4 and for (u = 0, f = 2) only 2. While calculating the number
of configurations it is important to remember that the flag of the first state S1

1⊕ is either u or
f. There are some details of how to find the placements but they are made explicit only in the
full proof of the lemma. All possible placements are depicted in Figure 3.

In most steps we perform using Flag-Assign the distinction between u and f seems unim-
portant. We will need it to properly identify different placements of flags in p-∇-CF(M,Z), but
indeed in all other tasks one can treat them as a single ”unique” flag.

The next step is calculating the number of values that can be assigned to states in a given
setup and for a given placement of flags. We calculated those numbers assuming it is possible
to have such placement. This assumption is not always true as particular messages and outputs
exclude some options. For example, if both messages start with the same block then all posi-
tions where the two first states are unique are impossible. By Calc we denote the algorithm
calculating the cardinality of subsets of p-∇-CF(M,Z), the details of Calc are specified below
in Alg. 5. It goes through a single placement of flags. The basic rules of its operation are: for
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(u = 4, f = 0)

(u = 2, f = 1)

(u = 1, f = 1)

(u = 0, f = 2)

(u = 0, f = 1)

setups

ū = 4

ū = 3

ū = 2

ū = 1

P1
1 =

{[
u u
u u

]}

P2
1 =

{[
u f
u n

]
,

[
u u
f n

]
,

[
u n
f u

]
,

[
f u
u n

]
,

[
f n
u u

]}

P2
2 =

{[
f u
n u

]}

P3
1 =

{[
u n
f n

]
,

[
f n
u n

]}

P3
2 =

{[
f u
n n

]}

P3
3 =

{[
f n
n u

]}

P4
1 =

{[
f n
f n

]}

P4
2 =

{[
f f
n n

]}

P5
1 =

{[
f n
n n

]}

positions

(2r|C| − 2) · (2r|C| − 3) · |C| · |C|

(2r|C| − 2) · |C|

(2r|C| − 1) · |C| · |C|

1

(2r|C| − 1) · |C|

|C|

2

(2r|C| − 1) · |C|

1

the number of different values

Figure 3: Possible placements for the limited SpGen.

[
. .
. .

]
denotes the flags assigned to the

four states. ū denotes the total number of unique states: ū := u+ f .

every unique flag that maps to a unique flag multiply the result by 2r|C|, for every unique flag
that maps to a non-unique flag multiply the result by 1, for every non-unique flag that maps to
any state multiply the result by 1, and for every unique flag in the last column of flagged states
multiply the result by |C|. The first two rules are adjusted a bit to keep track of non-repeating
unique states and allow for multiple values of non-unique states respectively. The last column
in Fig. 3 lists the results of Calc for placements in the respective rows. If the squeezing phases
were longer we would have to account for the fact that outer part of the state can be either
unique or not which slightly changes the final outcome.

Now we want to show that the probability function p is a polynomial in |C|−1. Up to this
point we have shown that

∑

∇-c

(2,2)∏

(i,j)=(1,1)

P

[
ϕf (S

i
j⊕) = Sij+1 |

∧

(i′,j′)≺(i,j)

ϕf (S
i′
j′⊕) = Si

′
j′+1; ∀i, j, i′, j′ : Sij , Sij⊕ ∈ ∇-c




=
∑

p-∇-cf

(2,2)∏

(i,j)=(1,1)

P

[
ϕf (S

i
j⊕) = Sij+1 |

∧

(i′,j′)≺(i,j)

ϕf (S
i′
j′⊕) = Si

′
j′+1; ∀i, j, i′, j′ : Sij , Sij⊕ ∈ p-∇-cf


 , (28)

where the order ”≺” is the same as in Eq. (27). In the above equation we have discarded those
∇-c that require ϕf to output different states on the same input, because the probability is
then 0. The sum in Eq. (28) can be expanded to

∑

p-∇-cf

· · · =
∑

u=4

· · ·+
2∑

u=0

b(4−u)/2c∑

f=1

∑

P∈P(u,f)

∑

p-∇-cf(u,f,P )

· · · , (29)

where by p-∇-cf(u, f, P ) we denote the configuration with the number of unique and non-
unique states and placement fixed. P(u, f) is the set of all placements in which the flags can be
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arranged given the number of unique and non-unique states. We omitted the input (M,Z) to P
for brevity. Making use of information from Fig. 3 we can now evaluate expression (28). Note
that setting u and f to some particular values allows us to evaluate the probabilities. Denoting
the total number of unique states by ū we get that

(2,2)∏

(i,j)=(1,1)

P


ϕf (S

i
j⊕) = Sij+1 |

∧

(i′,j′)≺(i,j)

ϕf (S
i′
j′⊕) = Si

′
j′+1


 = (2r|C|)−ū (30)

for p-∇-cf with u+ f = ū. Finally we arrive at

p(|C|−1) =
∑

P∈P1
1

(2r|C|)−4 · (2r|C| − 2)(2r|C| − 3)|C|2δ(P )+

∑

P∈P2
1

(2r|C|)−3 · (2r|C| − 2)|C|δ(P ) +
∑

P∈P2
2

(2r|C|)−3 · (2r|C| − 1)|C|2δ(P )+

∑

P∈P3
1

(2r|C|)−2 · δ(P ) +
∑

P∈P3
2

(2r|C|)−2 · (2r|C| − 1)|C|δ(P )+

∑

P∈P3
3

(2r|C|)−2 · |C|δ(P ) +
∑

P∈P4
1

(2r|C|)−2 · 2δ(P )+

∑

P∈P4
2

(2r|C|)−2 · (2r|C| − 1)|C|δ(P ) +
∑

P∈P5
1

(2r|C|)−1 · δ(P ), (31)

where the sets are denoted as in Fig. 3. The function appearing in the above equation is defined
as

δ(M,Z, P ) :=

{
0 if p-∇-CF(M,Z)(u, f, P ) = ∅
1 otherwise

, (32)

where in Eq. (31) we omitted the input of (M,Z) for readability.
The degree of p(|C|−1) is at most 2, as claimed for messages of length 2r-bits. The coefficient

for |C|0 is

a0 =
∑

P∈P1
1

2−2rδ(P ) +
∑

P∈P2
2

2−2rδ(P ) +
∑

P∈P3
2

2−rδ(P ) +
∑

P∈Pt2

2−rδ(P ). (33)

Let us recapitulate the results of this section. First we characterized the possible internal
functions by the outputs of their consecutive evaluations, Eq. (26). Secondly we captured the
features of the intermediate states that determine the probability of seeing a particular input-
output behavior, Eq. (30). Finally we calculated an explicit formula for the probability function,
Eq. (31), (33).

6 Proof of Lemma 9

In this section we give the complete proof of Lemma 9 for the general case of q ≥ 1 queries the
adversary makes and message lengths bounded by some m, not fixed to 2 like in the previous
section. In Subsection 6.1 we expand the probability expression to encompass all intermediate
states of

(
∀i ∈ [2q] : SpGenϕf

(Mi, `i) = Zi
)

and individual evaluations of ϕf . In Subsection 6.2
we introduce the concept of unique states to evaluate the probabilities of P[ϕf (S1) = S2]. In
Subsection 6.3 we define the algorithm that calculates the cardinality of the set of interme-
diate states—and equivalently inner functions—consistent with given characteristics. In Sub-
section 6.4 we conclude the proof and provide the final expression for the probability of an
input-output pair under a random SpGenϕf

.
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We omit the padding function of the sponge construction and assume that the length of all
Mi is a multiple of r. This is done without loss of generality since we can just say that all
the considered messages are in fact messages after padding and we do not use any properties
of the padding in the proof. Also we focus on q evaluations of SpGen instead of 2q to improve
readability.

6.1 Expansion of the probability function

In this section we expand the probability function to the point that all intermediate states are
accounted for. We follow exactly the same reasoning as at the beginning of Section 5. We
consider the event

(
∀i ∈ [q] : SpGenϕf

(Mi, `i) = Zi
)

and then include the states that appear
between consecutive evaluations of ϕf , similarly to the steps in Equations (19)–(21).

To keep track of the states we introduce the following notation. By the upper-index we
denote the number of evaluations of SpGen, going from 1 to q. The lower index corresponds to
the number of evaluations of ϕf in the i-th calculation of SpGen. A state occurring during the
calculation on Mi that is the input to the j-th evaluation of ϕf is denoted by Sij⊕. The output

of that evaluation is Sij+1. All states traversed in q evaluations of SpGen can be depicted in a

similar way as in Figure 2 but in an array with q rows with |Mi|r + |Zi|r columns each.
We call an array like that presented in Figure 2 with values assigned to every state a nabla

configuration ∇-c. ∇ symbolizes the triangle shape in which we put states between evaluations
of ϕf , each corner being an outer or inner part of the state. Note that in the figure we assume
the initial state to be equal to (0r, IC) which is not included in our definition of ∇-c. By array
we mean a 2-dimensional matrix with unequal length of rows. Now we define ∇-c relative to
input-output pairs (M,Z). The size of the array is determined by the number of blocks in Mi

and Zi.

Definition 13 (∇-c). The nabla configuration ∇-c for (M,Z) is an array of triples

(
S̄ S̄⊕

Ŝ

)
∈

{0, 1}2r×C, where C is an arbitrary non-empty finite set. The array ∇-c consists of q rows, for
every i row i has ki columns and ki := |Mi|r + |Zi|r (|Mi|r denotes the number of r-bit blocks
in Mi). Formally we have

∇-c :=

[(
S̄ij S̄

i
j⊕

Ŝij

)]

i∈[q]

j∈[ki]

. (34)

To refer to the element of ∇-c that lies in row i and column j we write ∇-cij. To refer to parts
of the triple that lies in row i and column j we write

Sij ∈ ∇-c⇔ ∇-cij =

(
S̄ S̄⊕

Ŝ

)
∧ Sij = (S̄, Ŝ)

Sij⊕ ∈ ∇-c⇔ ∇-cij =

(
S̄ S̄⊕

Ŝ

)
∧ Sij⊕ = (S̄⊕, Ŝ)

(35)

Let us define the number of evaluations of ϕf in ∇-c for (M,Z) as

κ :=

q∑

i=1

(ki − 1), (36)

note that | ∇-c | = κ+ q.
To make good use of the newly introduced concept of nabla configurations ∇-c we want to

restrict the set of arrays we discuss. Similarly to Equation (22) we want to put constraints on
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the set of ∇-c to make explicit the requirement that states correspond to a correct input-output
behavior of SpGen. The set of ∇-c for (M,Z) is defined as follows.

Definition 14 (∇-C(M,Z)). The set of nabla configurations ∇-c for (M,Z) is a set of arrays of

size specified by (M,Z), ∇-C(M,Z) ⊂
(
{0, 1}2r × C

)κ+q
. We define ∇-C(M,Z) by the following

constraints

∀i ∈ [q] : Ŝi1 = IC ,

∀i ∈ [q] : S̄i1 = 0r,

∀i ∈ [q], 1 ≤ j ≤ |Mi|r : S̄ij⊕ = S̄ij ⊕M i
j ,

∀i ∈ [q], |Mi|r < j ≤ ki : S̄ij⊕ = S̄ij = Zij−|Mi|r .

(37)

The formal definition reads

∇-C(M,Z) := {∇-c for (M,Z) : ∇-c fulfills constraints (37)} . (38)

In the following we assume that rows of all ∇-c ∈ ∇-C(M,Z) are initially sorted according
to the following relation. We arrange (Mi,Zi) in non-decreasing order in terms of length, so
∀i < j : ki ≤ kj , this also means that rows of ∇-c are ordered in this way.

Having established the notation we move on to realizing the goal of this section: rewriting
the probability function in a suitable way for further analysis. In the following when we consider(
ϕf (S

i
j⊕) = Sij+1

)
for some ∇-c we leave implicit that Sij⊕, S

i
j+1 ∈ ∇-c. We have that

∀i ∈ [q] :SpGen(Mi) = Zi

⇔∀i ∈ [q] :
∨

∇-c∈∇-C(M,Z)

(
ϕf (S

i
1⊕) = Si2

)
∧
(
ϕf (S

i
2⊕) = Si3

)
∧ · · · ∧

(
ϕf (S

i
(ki−1)⊕) = Siki

)

(39)

⇔
∨

∇-c∈∇-C(M,Z)

q∧

i=1

ki−1∧

j=1

(
ϕf (S

i
j⊕) = Sij+1

)
. (40)

In the above equations we first include the intermediate states and then combine all evaluations
of ϕf . In the following we make use of the fact that the events we take the disjunction of are
disjoint and the logical disjunction turns into a sum of the probability.

P
f

$←SS

[
∀i ∈ [q] : SpGen(Mi) = Zi

]
= P


 ∨

∇-c∈∇-C(M,Z)

q∧

i=1

ki−1∧

j=1

(
ϕf (S

i
j⊕) = Sij+1

)



=
∑

∇-c∈∇-C(M,Z)

P




q∧

i=1

ki−1∧

j=1

(
ϕf (S

i
j⊕) = Sij+1

)

 . (41)

To further extract an expression involving the probability of a single
(
ϕf (S

i
j⊕) = Sij+1

)
we

use Bayes’ rule. By a chain of conditions we want to arrive at a function we can evaluate in the

end. At this point we want to choose a particular order of
(
ϕf (S

i
j⊕) = Sij+1

)
events. Let us

define the order ≺ as

(i, j) ≺ (i′, j′)⇔
(
j < j′

)
∨
(
j = j′ ∧ i < i′

)
. (42)
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The above rule imposes an order that begins with the top-left corner of Figure 2 and proceeds
downwards to the end of the column to continue from the second column from the left.

p(|C|−1) =
∑

∇-c∈∇-C(M,Z)

P




q∧

i=1

ki−1∧

j=1

(
ϕf (S

i
j⊕) = Sij+1

)



=
∑

∇-c

P



(
ϕf (S

q
(kq−1)⊕) = Sqkq

)
|

∧

(i,j)≺(q,kq−1)

(
ϕf (S

i
j⊕) = Sij+1

)

P


 ∧

(i,j)≺(q,kq−1)

(
ϕf (S

i
j⊕) = Sij+1

)



=
∑

∇-c

P



(
ϕf (S

q
(kq−1)⊕) = Sqkq

)
|

∧

(i,j)≺(q,kq−1)

(
ϕf (S

i
j⊕) = Sij+1

)



· P



(
ϕf (S

q
(kq−1)⊕) = Sqkq

)
|

∧

(i,j)≺(q−1,kq−1)

(
ϕf (S

i
j⊕) = Sij+1

)



· P


 ∧

(i,j)≺(q−1,kq−1)

(
ϕf (S

i
j⊕) = Sij+1

)

 = · · · =

=
∑

∇-c∈∇-C(M,Z)

(q,kq−1)∏

(i,j)=(1,1)

P


(ϕf (S

i
j⊕) = Sij+1

)
|

∧

(i′,j′)≺(i,j)

(
ϕf (S

i′
j′⊕) = Si

′
j′+1

)

 . (43)

In the case there is no state (q − 1, kq − 1) we just take the next state preceding (q, kq − 1) in
the order given by Equation (42).

Up to this point we have performed some transformations of the event(
∀i ∈ [q] : SpGenϕf

(Mi, `i) = Zi
)
, but we did not address the issue of correctness. Is it

correct to consider state values in evaluations of SpGen instead of different ϕf—are we in fact
discussing the probability over the random choice of the internal function? The answer to this
question is ”yes”, that is because of the equivalence of every ∇-c with some set of ϕf . We can
treat the input-output pairs for ϕf assigned in ∇-c as values in the function table of ϕf . By
picking a single ∇-c we fix at most κ rows of this table. As we sample ϕf uniformly at random
we are interested in the fraction of functions that are consistent with the input-output pairs
(M,Z) among all functions. Note however, that we only care about κ evaluations of ϕf and all
the details of those future evaluations are implicitly simplified in the fraction. This allows us
to focus only on the part of the function table corresponding to those few evaluations and that
is exactly ∇-c. The summing over nabla configurations ∇-c corresponds to different values of
the function table that are still consistent with (M,Z).

The probability P
[(
ϕf (S

i
j⊕) = Sij+1

)
| ∧(i′,j′)≺(i,j)

(
ϕf (S

i′
j′⊕) = Si

′
j′+1

)]
equals either 1

2r·|C|
or 1 or 0. If the internal function is queried on a ”fresh” input, it outputs any value with uniform
probability. If on the other hand it is queried on the same input for the second time, it outputs
the value it has output before with probability 1. One might think that the proof is finished,
p(λ) =

∑
i wi(λ), where wi are monomials in λ of degree up to κ + q. There is one problem

with that reasoning, namely that the sum limits depend on the variable λ. Up until now we

have shown that p(λ) =
∑v(1/λ)

i=1 wi(λ), where v is another polynomial. Even for v = id (the
identity function) the degree of p is different than the maximal degree of wi. This means that
we have to analyze the expression derived in Equation (43) in more detail. To this end, we add
more structure to ∇-C(M,Z) which will make it easier to count the number of values that the
intermediate states can assume, i.e. the number of nabla configurations ∇-c in ∇-C(M,Z).
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6.2 Unique and non-unique states

The goal of this section is to evaluate P
[(
ϕf (S

i
j⊕) = Sij+1

)
| ∧(i′,j′)≺(i,j)

(
ϕf (S

i′
j′⊕) = Si

′
j′+1

)]

for any ∇-c and any (M,Z). We approach this problem by recognizing which states in a
particular ∇-c are fed to ϕf once and which are repeated. We define an algorithm that includes
the information about uniqueness of the intermediate states in ∇-c. The notion of uniqueness
is derived relative to the events we condition on in Eq. (43), that is why we took special care of
the order in which we use the chain rule.

In this section we introduce two algorithms Prep and Flag-Assign. The former is an
auxiliary algorithm that prepares the array ∇-c for further analysis. The latter algorithm
assigns flags to states in ∇-c. Flags signify if a state appears once or more in the array. We use
an algorithmic definition to explicitly show every step of the procedure.

Algorithm 3 takes as input an array ∇-c and groups its elements according to the value
input to ϕf . An important detail is the sorting rule among states with the same ”⊕”-state
value; we use the order defined in Eq. 42. The output of Algorithm 3 Prep(∇-c) is a vector
(1-dimensional matrix), to access its l-th element we write ∇-cl.

Algorithm 3: Prep

Input : ∇-c for (M,Z)

Output: ∇̃-c

1 ∇̃-c := ∇-c, append three work spaces to each element of ∇̃-c
2 foreach 1 ≤ i ≤ q, 1 ≤ j ≤ ki − 1 do

3 ∇̃-c
i

j =
(
∇-cij , index,⊕-state, image

)
:=
(
∇-cij , (i, j), S

i
j⊕, S

i
j+1

)

4 Sort ∇̃-c primarily according to the third entry and secondarily according to the second
entry (using the order defined in Equation (42)).

5 Output ∇̃-c

The main contribution of this subsection is Algorithm 4 which adds to each ∇-c information
about the repetitions of the internal states. Running Prep groups the state values. The next
step is to assign specific flags to states that are first (according to a specified rule) in each
group. To each Sij⊕ we will assign a flag, u for unique states, n for non-unique states, and f for
states that appear twice or more in total but from our perspective it is their first appearance.
The output of Algorithm 4 is Flag-Assign(∇-c) = ∇-cf (”nabla configuration with flags”)
and ∀i, j : ∇-cfij = (F∇-cij , S), where the first register is the whole state between evaluations
together with the assigned flag of ϕf and S is the corresponding image. To refer to the l-th
register of ∇-cij we write ∇-cij(l). Flag f is important when discussing the relative position of
unique flags (u or f) in the array of ∇-cf. In the end of this section and in the beginning of
the next section we are not going to need this distinction but it will become important when
analyzing the final probability expression.

Let us define a simple function acting on elements of arrays ∇-cf output by Flag-Assign.
Flag : {u, f ,n} × {0, 1}2r × C → {u, f ,n},

Flag(∇-cfij) = Flag(

(
S̄ij

FS̄ij⊕
FŜij

)
, S) := F . (44)

Transition probabilities in Equation (43) depend on the flags we assigned to states in ∇-c. We
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Algorithm 4: Flag-Assign

Input : ∇-c for (M,Z)
Output: ∇-cf

1 ∇-cf = ∅
2 ∇̃-c := Prep(∇-c)
3 Set counter l := 1

4 while l ≤ |∇̃-c| = κ+ q do
5 Set counter i := 1 // the number of states with the same value

6 while ∇̃-cl+i(3) = ∇̃-cl(3) do
7 i := i+ 1

8 if i = 1 then

9

(
S̄ S̄⊕

Ŝ

)
:= ∇̃-cl(1), append

((
S̄ uS̄⊕

uŜ

)
, ∇̃-cl(2), ∇̃-cl(4)

)
to ∇-cf //

// (state with the same value and a flag, indices, image)

10 (i′, j′) := ∇̃-cl(2)

11 if i > 1 then

12

(
S̄ S̄⊕

Ŝ

)
:= ∇̃-cl(1), append

((
S̄ f S̄⊕

f Ŝ

)
, ∇̃-cl(2), ∇̃-cl(4)

)
to ∇-cf

13 for j = 1, 2, . . . , i− 1 do

14

(
S̄ S̄⊕

Ŝ

)
:= ∇̃-cl(1), append

((
S̄ nS̄⊕

nŜ

)
, ∇̃-cl(2), ∇̃-cl(4)

)
to ∇-cf

15 l := l + i

16 Make a 2-dimensional array out of ∇-cf according to the second entry in a standard
left-to-right order ((i, j) ≺l-r (i′, j′)⇔ (i < i′)∨ (i = i′ ∧ j < j′)), delete the second entry
of ∇-cf // ∇-cf ij =(state with a flag, image)

17 Output ∇-cf
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have that

Flag(∇-cfij) ∈ {u, f} ⇒ P


ϕf (

(u∨ f )Sij⊕) = S |
∧

(i′,j′)≺(i,j)

(
ϕf (S

i′
j′⊕) = Si

′
j′+1

)

 =

1

2r · |C| ,

Flag(∇-cfij) = n⇒ P


ϕf (

nSij⊕) = S |
∧

(i′,j′)≺(i,j)

(
ϕf (S

i′
j′⊕) = Si

′
j′+1

)

 =

{
1 if S = ∇-cfij(2)

0 otherwise
.

(45)

6.3 Cardinality of ∇-C(M,Z)

In this section we evaluate the number of intermediate states that give(
∀i ∈ [q] : SpGenϕf

(Mi, `i) = Zi
)
. First we impose the constraint of ϕf being a func-

tion. Then we want to calculate the product of probabilities in Eq. (43). It depends on the
number of unique states in ∇-c so we divide the set of possible states into subsets with the same
number of states with the flag u or f. The next steps involve further divisions of ∇-C(M,Z).

In the process of calculating the conditional probabilities in Eq. (43) we included in each
state in ∇-c the image it should have under ϕf . The set ∇-C(M,Z) does however contain
states that would violate the constraint of ϕf being a function. The first step to calculate the
cardinality of ∇-C(M,Z) is to exclude ∇-c that do not fulfill this requirement. The set of states
that should be taken into consideration is defined below, we denote this set by p-∇-CF(M,Z)
(p emphasizes the fact that ϕf is a proper function).

Definition 15 (p-∇-CF(M,Z)). The set of nabla configurations ∇-c for (M,Z) with flags
and a proper function ϕf is a set of arrays of size specified by (M,Z). p-∇-CF(M,Z) ⊂((
{u, f ,n} × {0, 1}2r × C

)
× ({0, 1}r × C)

)κ+q
, the set is defined in two steps, first we define

the set of ∇-cf that are output by Flag-Assign,

∇-CF(M,Z) := {∇-c : ∃∇-c0 ∈ ∇-C(M,Z),∇-c = Flag-Assign(∇-c0)} . (46)

We define p-∇-CF(M,Z) by the following constraints on ∇-CF(M,Z):

∀Sij ∈ ∇-cf ∀j > 1 : Sij = ∇-cfij−1(2). (47)

The formal definition reads

p-∇-CF(M,Z) := {∇-cf ∈ ∇-CF(M,Z) : ∇-cf fulfills constraints (47)} . (48)

One may think about p-∇-CF(M,Z) as follows, first we consider∇-c: an array of states. The
collection of all those arrays—with the exception of those that do not fulfill constraints (37)—is
denoted by ∇-C(M,Z). On each ∇-c ∈ ∇-C(M,Z) we run the algorithm Flag-Assign, getting
a collection of ∇-cf—denoted by ∇-CF(M,Z). Now we discard all those ∇-cf that do no fulfill
constraints (47). The collection we are left with is denoted by p-∇-CF(M,Z). We have the
following relations between sets:

∇-CF(M,Z)(1)
omitting the flags' ∇-C(M,Z) (49)

p-∇-CF(M,Z) ⊂ ∇-CF(M,Z) . (50)

Each p-∇-cf ∈ p-∇-CF(M,Z) has some number of unique states: with flag u or f. Let us
denote this number by ū. Eq. (45) implies that no matter in what configurations the unique
states are, the product of probabilities in Eq. (43) is the same. Hence the first division of
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p-∇-CF(M,Z) is in terms of the total number of unique states. We denote the state with a
fixed number ū by p-∇-CF(M,Z, ū), we have that

p-∇-CF(M,Z) =

κ⋃

ū=1

p-∇-CF(M,Z, ū). (51)

The product in Eq. (43) for p-∇-cf ∈ p-∇-CF(M,Z, ū) evaluates to

(q,kq−1)∏

(i,j)=(1,1)

P


(ϕf (S

i
j⊕) = Sij+1

)
|

∧

(i′,j′)≺(i,j)

(
ϕf (S

i′
j′⊕) = Si

′
j′+1

)

 =

(
1

2r · |C|

)ū
, (52)

where all states p-∇-cf are in p-∇-CF(M,Z, ū).
We have to work a bit more to calculate the total number of states. The number of pos-

sibilities in which a single transition event can be realized depends both on the input and the
output. For that reason we need to specify the configuration of flags in more detail, not just
by the total number of unique states. Let us denote a transition event from a unique state to
a unique state by

(
ϕf (

(u∨ f )S⊕) = (u∨ f )S
)

and similarly for other flags. The flag of the output
is defined by the XORed message block or the output block. Before we go into details of the
analysis of the structure of p-∇-CF(M,Z), we list the intuitive principles of counting the output
states depending on the input and output states:

1.
(
ϕf (

(u∨ f )S⊕) = (u∨ f )S
)
—the only constraint is that the output cannot be the same as

any on the previous unique states, the number of possible output values is at most 2r · |C|
or |C| and can be smaller by at most κ (the bound is 2r · |C| if the transition is in the
absorbing phase and |C| if it is in the squeezing phase),

2.
(
ϕf (

(u∨ f )S⊕) = nS
)
—the output has to be in the set of outputs of states with the flag f,

the number of possible output values is at most κ,

3.
(
ϕf (

nS⊕) = (u∨ f ∨n)S
)
—the output is defined by the image memorized in the second

entry of the state, the number of possible output values = 1.

The actual numbers in the above guidelines can be calculated precisely but they depend on the
actual case we deal with.

To properly treat the transition events we need to keep track of not only the total number
of unique states but also the number of truly unique u states. We denote the latter by u
and the set with those numbers fixed by p-∇-CF(M,Z, ū, u). In the above paragraph we also
noticed that we should include in our considerations the number of unique states in different
phases of SpGen. The number of states with the flag u in the absorbing phase is denoted
by uabs. Note that we are addressing all q absorbing phases so we take into account flags of
all states with indices (i, j) ∈ {(i′, j′)}i′∈{1,...,q},j′∈{1,...,|Mi′ |r}. The number of states with the
flag u in the squeezing phase is denoted by usqu and we take into account states with indices
(i, j) ∈ {(i′, j′)}i′∈{1,...,q},j′∈{|Mi′ |r+1,...,ki′−1}. Similarly the total number of unique states is
denoted by ūabs and ūsqu.

Next we fix particular placements of flags in the arrays p-∇-cf ∈
p-∇-CF(M,Z, ūabs, uabs, ūsqu, usqu). We no longer need to keep u and ū explicit as u = uabs+usqu

and ū = ūabs + ūsqu. Let us define a placement P for (M,Z) as an array of flags F ∈ {u, f ,n}
with its dimensions determined by (M,Z) in the same way as for nabla configurations ∇-c.
The set of placements P(M,Z, ūabs, uabs, ūsqu, usqu) is defined as the set of all placements P
encountered in elements of p-∇-CF(M,Z, ūabs, uabs, ūsqu, usqu). We are going to write Flag(P ij )
to determine the flag in the position (i, j) in placement P . For each P we are able to calculate
the size of p-∇-CF(M,Z, P ), we no longer add ūabs and other parameters as they are already
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included in P . Before we define the algorithm performing this calculation we need to bound
the number of different placements.

Let us assume for a moment that (M,Z) restrains only the size of p-∇-cf and not the
values of the states. If there were no constraints coming from the workings of Flag-Assign
then unique states would be distributed in all combinations of picking ūabs elements among
states in absorbing phases. Additionally, we also want to take into account combinations of
uabs elements among the ūabs flags. Let us recapitulate: first we distribute ūabs flags (without
specifying whether they are u or f) and then assign them concrete values (u or f). The total
number of state-triples in the absorbing phases of p-∇-cf is µ :=

∑q
i=1|Mi|r. The number of

possibilities for the first step is
(

µ
ūabs

)
and the second step is

(
ūabs
uabs

)
. The total number of

possibilities of placing the unique flags in absorbing phases is
(

µ
ūabs

)
·
(
ūabs
uabs

)
.

The problem of distributing unique states in squeezing phases is the same as in absorbing
phases. The total number of state-triples with flags in the squeezing phases of p-∇-cf is ζ :=∑q

i=1(|Zi|r − 1). The number of placements is
(

ζ
ūsqu

)
. We also need to multiply this result by

the number of placements of states with flag u among all unique states.
The two calculations above bring us to the conclusion that our analysis is sufficiently detailed;

we have identified and taken into account all parts of
(
∀i ∈ [q] : SpGenϕf

(Mi, `i) = Zi
)

that
depend on |C|. In summary we divided p-∇-CF(M,Z) into a small (relatively to |C|) number
of subsets whose size we can actually calculate. The last result assures that even though we do
not formally describe the structure of the last level of division of p-∇-CF(M,Z), the number of
possibilities of next divisions does not depend on |C|. So we have that

|P(M,Z, ūabs, uabs, ūsqu, usqu)| ≤
(

µ

ūabs

)(
ūabs

uabs

)
·
(

ζ

ūsqu

)(
ūsqu

usqu

)
(53)

≤
(

µ

µ/2

)2( ζ

ζ/2

)2

≤
(

κ

κ/2

)4

≤ κ4κ. (54)

Our assumption is that κ is fixed so the number of placements is independent of |C|. Note that
we can compute |P(M,Z, ūabs, uabs, ūsqu, usqu)| for fixed parameters and the above inequality
just shows that irrespective of the exact value of the calculation the number of placements does
not depend on |C| and is relatively small.

Let us define a function that helps us accommodate for the fact that some subsets of
p-∇-CF(M,Z) are empty for some specific (M,Z):

δ(M,Z, P ) :=

{
1 if p-∇-CF(M,Z, P ) 6= ∅
0 otherwise

. (55)

In what follows we leave out the input to δ, as it can be inferred from context. For example
δ evaluates to 0 if the input includes ūabs = µ and the first block of the input messages is not
always different.

The last division we make is done be characterizing uniqueness of outer and inner parts of
states. This step is done to get the precise and correct result, but the high level explanation and
an approximation of the output of Calc is already captured in 1. We have not captured this
situation in detail in our example proof because it becomes important only if longer outputs
are present. Here we explain the procedure of including the necessary details.

Main detail we add is assigning flags to outer and inner parts of states individually. We
introduce those flags only now to keep the proof as clear as possible; technically to include
the additional flags we modify the algorithm Flag-Assign in such a way that it runs over a
configuration ∇-c two additional times but acting solely on outer states and inner states. Those
two additional runs assign the same flags as the original one but corresponding to just one of
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the parts of S⊕ states. Rest of the discussion after applying Flag-Assign is unchanged and
depends only on flags of the full states.

When discussing placements note that a unique state (u or f) can consist of a unique outer
state and a unique inner state but also out of a non-unique outer state and a unique inner
state or vice versa. After we assign a particular placement P ∈ P(M,Z, ūabs, uabs, ūsqu, usqu)
there are still many possibilities of arranging outer and inner states flags. There are exactly

three possibilities every unique state can be arranged in:

(
u ∨ f
u ∨ f

)
,

(
u ∨ f

n

)
, and

(
n

u ∨ f

)
,

where we symbolize a state S⊕ by a column vector with flags assigned to its outer state in the
first row and inner state in the second row. Hence, for every placement P we have 3ūabs+ūsqu

placements of the outer and inner states flags. We are going to mark the fact that we have
included those additional details into placements by adding a star to the set of placements
P ∈ P∗(M,Z, ūabs, uabs, ūsqu, usqu). We have that

|P∗(M,Z, ūabs, uabs, ūsqu, usqu)| ≤ κ4κ · 3ūabs+ūsqu . (56)

We also write Flag(P̄ ij ) and Flag(P̂ ij ) to access the flag of the outer and inner part of P ij
respectively.

Alg. 5 below shows the algorithm Calc that outputs the number of differ-
ent p-∇-cf ∈ p-∇-CF(M,Z, ūabs, uabs, ūsqu, usqu) for some given placement P ∈
P∗(M,Z, ūabs, uabs, ūsqu, usqu). To capture the fact that the number of possible values a unique
state can have depends on the number of unique states with already assigned values we define
the following sets. For unique outer states we have

Ūprev(P, i, j) :=
∣∣∣
{
P i
′
j′ : (i′, j′) ≺ (i, j) ∧ Flag(P̄ i

′
j′ ) ∈ {u, f}

}∣∣∣ , (57)

Ū
f
prev(P, i, j) :=

∣∣∣
{
P i
′
j′ : (i′, j′) ≺ (i, j) ∧ Flag(P̄ i

′
j′ ) = f

}∣∣∣ . (58)

For unique inner states we have

Ûprev(P, i, j) :=
∣∣∣
{
P i
′
j′ : (i′, j′) ≺ (i, j) ∧ Flag(P̂ i

′
j′ ) ∈ {u, f}

}∣∣∣ , (59)

Û
f
prev(P, i, j) :=

∣∣∣
{
P i
′
j′ : (i′, j′) ≺ (i, j) ∧ Flag(P̂ i

′
j′ ) = f

}∣∣∣ . (60)

Note that all of the above quantities (57, 58, 59, 60) are bounded by

1 ≤ Ūprev(P, i, j), Ûprev(P, i, j), Ū
f
prev(P, i, j), Û

f
prev(P, i, j) ≤ ūabs + ūsqu ≤ κ. (61)

In the algorithm we also use N-Possibilities, defined in Eq. (87), is the number of possibilities
in which one can assign values to non-unique states in a nabla configuration. N-Possibilities
is bounded by κκ, which is an upper bound for Eq. (88).

Thanks to the additional details we get the precise form of the expression p but note that
when we sum over placements of outer and inner states flags we have that same δ(M,Z, P ) for
all cases in the absorbing phases, so we sum the expressions listed in Calc and get the same
result as in Section 5. In the squeezing phases the outer states are fixed by the outputs Z and
we can do the sum over placements with the same flag of the outer state in Calc.

6.4 Final expression

In the previous subsections we formalized algorithms that help us analyze the expression in
Eq. (43). First we introduced Flag-Assign that analyzes ∇-c from the perspective of having
the same input to ϕf multiple times. Then we defined Calc that counts the arrays of states
that fulfill a given set of constraints, the number and arrangement of unique states. The final
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Algorithm 5: Calc

Input : P ∈ P∗(M,Z, ūabs, uabs, ūsqu, usqu)
Output: α ∈ N, cardinality of the set p-∇-CF(M,Z, P )

1 α := 1
2 for j = 1, . . . , ki − 2, i = 1, . . . , q do
3 if j < |Mi|r and Flag(P ij ) ∈ {u, f} then // Absorbing phases

4 if Flag(P ij+1) ∈ {u, f} then //
(
ϕf (

(u∨ f )S⊕) = (u∨ f )S
)

5 if Flag(P̄ ij+1) ∈ {u, f} and Flag(P̂ ij+1) ∈ {u, f} then // P ij+1 =

(
u ∨ f
u ∨ f

)

6 α = α ·
(
2r − Ūprev(P, i, j + 1)

)
·
(
|C| − Ûprev(P, i, j + 1)

)

7 if Flag(P̄ ij+1) ∈ {u, f} and Flag(P̂ ij+1) = n then // P ij+1 =

(
u ∨ f

n

)

8 α = α ·
(
2r − Ūprev(P, i, j + 1)

)
· Ûf

prev(P, i, j + 1)

9 if Flag(P̄ ij+1) = n and Flag(P̂ ij+1) ∈ {u, f} then // P ij+1 =

(
n

u ∨ f

)

10 α = α · Ūf
prev(P, i, j + 1) ·

(
|C| − Ûprev(P, i, j + 1)

)

11 if j ≥ |Mi|r and Flag(P ij ) ∈ {u, f} then // Squeezing phases

12 if Flag(P ij+1) ∈ {u, f} then //
(
ϕf (

(u∨ f )S⊕) = (u∨ f )S
)

13 if Flag(P̂ ij+1) ∈ {u, f} then // P ij+1 ∈ {
(

u ∨ f
u ∨ f

)
,

(
n

u ∨ f

)
}

14 α = α ·
(
|C| − Ûprev(P, i, j + 1)

)

15 if Flag(P̂ ij+1) = n then // P ij+1 =

(
u ∨ f

n

)

16 α = α · Ûf
prev(P, i, j + 1)

17 for i = 1, . . . , q, j = ki − 1 do
18 if Flag(P ij ) ∈ {u, f} then

19 α = α · |C| · 2r|Zi|r−`i

20 α = α ·N-Possibilities(κ− ūabs − ūsqu, ūabs + ūsqu − uabs − usqu, P )
21 Output α · δ(M,Z, P )
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part of the proof of Lemma 9 is to use those algorithms to show that p(|C|−1) is of the claimed
form. We start by formally writing down the expression in terms of divisions of p-∇-CF(M,Z)
we introduced and the outputs of Calc. Next we identify crucial elements of the sum that lead
to the claim of the lemma, showing the maximal degree of |C|−1 in the expression p(λ).

In the previous sections we showed that

p(|C|−1) =
∑

∇-c∈∇-C(M,Z)

(q,kq−1)∏

(i,j)=(1,1)

P


(ϕf (S

i
j⊕) = Sij+1

)
∣∣∣∣∣∣

∧

(i′,j′)≺(i,j)

(
ϕf (S

i′
j′⊕) = Si

′
j′+1

)

 (62)

=
∑

p-∇-cf∈p-∇-CF(M,Z)︸ ︷︷ ︸
Eq. (64),(65)

(q,kq−1)∏

(i,j)=(1,1)

P


(ϕf (S

i
j⊕) = Sij+1

)
∣∣∣∣∣∣

∧

(i′,j′)≺(i,j)

(
ϕf (S

i′
j′⊕) = Si

′
j′+1

)



︸ ︷︷ ︸
Eq. (52)

, (63)

where the second equality comes from the fact that constraints (47) exclude those ∇-c that have
probability 0. Let us also make the division of p-∇-CF(M,Z) explicit

p-∇-CF(M,Z) =

µ⋃

ūabs=1

µ⋃

uabs=0

ζ⋃

ūsqu=0

ζ⋃

usqu=0

⋃

P∈P∗(M,Z,ūabs,uabs,ūsqu,usqu)

p-∇-CF(M,Z, P ). (64)

Next we use Eq. (52) and the fact that for P ∈ P(M,Z, ūabs, uabs, ūsqu, usqu) we have

|p-∇-CF(M,Z, P )| = Calc(P ) (65)

to expand p(|C|−1) to

p(|C|−1) =
∑

ūabs,uabs,ūsqu,usqu,P

Calc(P )

(
1

2r · |C|

)ūabs+ūsqu
(66)

To calculate a0 and the maximal degree of p let us focus on p(|C|−1) for all unique (with
the flag u in both outer and inner part) sates:

q∏

i=1

|Mi|r−1∏

j=1

(2r − jq − i) (|C| − jq − i)
q∏

i=1

ki−2∏

j=|Mi|r

(|C| − jq − i)
q∏

i=1

(
2r|Z

i|r−`i |C|
)

(2r|C|)−κ .

(67)
In the above expression if we take all messages of maximal length m and outputs of maximal
length z we get a polynomial of degree κ − q = q(m + z − 2). This is necessarily the maximal
degree as every evaluation of ϕf increases the degree by one, except for the last but this cannot
be changed, the last column does not matter at all for the overall probability. Hence the maximal
degree of p is as claimed

η := q(m+ z − 2). (68)

In the case all states are unique, i.e. |C| → ∞, p(|C|−1) evaluates to ∼ 2−
∑

i `i . This expression
corresponds to the output probability of a random oracle, exactly how expected of a sponge
with all different inner states. If we only take the terms 2r|C| and |C| and the probability we
arrive at 2−

∑
i `i . This result is only one of the terms in a0 but note that all other terms

will correspond to different placements and will include δ(M,Z, P ) with different inputs, being
non-zero for different (M,Z). Hence for any given input-output pairs (M,Z) for |C| → ∞ the
probability function approaches the probability of a random oracle outputting Z on M. To get
the power of |C| equal to zero we need to have the same number of unique states (probability
terms decreasing the degree by one) as pairs of unique states (increasing the degree by one).
Configurations that satisfy those conditions come from inputs and outputs that are either fully
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unique or exactly the same as at least one other input or output, respectively. One special case
occurs if the output is just a single block long then messages can differ by just the last block
and still have different outputs (like in our example proof in Section 5).

In our proof we have focused on the case of ϕf being a random transformation. In Appendix 7
we provide the details that should be considered to show that Theorem 8 holds also for random
permutations.

7 Internal Permutations

In this section we prove the main result but for the internal function ϕf being a random
permutation. We use Zhandry’s PRF/PRP switching lemma from [23]. In Appendix A, we also
give a direct proof, resulting in a slightly worse bound.

Theorem 16. SpGenϕf
for a random permutation ϕf is quantumly indistinguishable from

a random oracle. More concretely, for all quantum algorithms A making at most q quantum
queries to SpGen, such that the input length is at most m · r bits long and the output length is
at most z · r bits long,

∣∣∣∣∣ P
ϕf

$←T (S)

[
A|SpGenϕf

〉(.) = 1
]
− P

h←R

[
A|h〉(.) = 1

]∣∣∣∣∣ <
π2

3
η3|C|−1, (69)

where the set of permutations is denoted by T (S) := {ϕf : S → S | ϕf is a bijection}. The
domain is defined as S = {0, 1}r × C for some non-empty finite set C.

Proof. It was proven in [23] that a random permutation can be distinguished from a random
function with probability at most π2q2/6|C| for any adversary making at most q quantum queries.
We can use this result in a reduction from distinguishing SpGen using a random permutation
from SpGen using a random function to distinguishing of a random permutation from a random
function. Using this result together with Theorem 8 gives us the resulting bound as follows

∣∣∣∣∣ P
ϕf

$←T (S)

[
A|SpGenϕf

〉(.) = 1
]
− P

h←R

[
A|h〉(.) = 1

]∣∣∣∣∣

=

∣∣∣∣∣ P
ϕf

$←T (S)

[
A|SpGenϕf

〉(.) = 1
]
− P

ϕf
$←SS

[
A|SpGenϕf

〉(.) = 1
]

+ P
ϕf

$←SS

[
A|SpGenϕf

〉(.) = 1
]
− P

h←R

[
A|h〉(.) = 1

]∣∣∣∣∣

(70)

≤
∣∣∣∣∣ P
ϕf

$←T (S)

[
A|SpGenϕf

〉(.) = 1
]
− P
φ

$←SS

[
A|SpGenϕf

〉(.) = 1
]∣∣∣∣∣

+

∣∣∣∣∣ P
ϕf

$←SS

[
A|SpGenϕf

〉(.) = 1
]
− P

h←R

[
A|h〉(.) = 1

]∣∣∣∣∣

(71)

≤
∣∣∣∣∣ P
ϕf

$←T (S)

[
B|ϕf 〉(.) = 1

]
− P
φ

$←SS

[
B|ϕf 〉(.) = 1

]∣∣∣∣∣+
π2

6
η3|C|−1 (72)

≤ π2

3
η3|C|−1. (73)
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8 Open Question

One of the most desirable security notions for hash functions is indifferentiability from a ran-
dom oracle which is defined with respect to a possible simulator that fools a distinguisher into
believing that it interacts with the internal function instead of a simulation of it. Proving indif-
ferentiability is more challenging than indistinguishability. It is not clear whether the natural
translation of the classical notion of indidfferentiability to the quantum setting is achievable.
Only recently, two articles [9, 25] opened the discussion, but so far, the results remain incon-
clusive.

In our work, we provide a quantum security guarantee more suitable for keyed primitives
where an attacker does not have access to the internal building block. On the one hand, we
increase the trust that hash functions based on the sponge construction are quantum safe and
on the other hand, we formally prove that it is a quantum secure pseudorandom function
when used with a keyed internal function—like it is used in the hash-based signatures scheme
SPHINCS+ [21] in the instantiation using the Haraka hash function [13].
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9 Symbol index

YX The set of functions {f : X → Y} 5

X
$← X X chosen uniformly from set X 5

[q] The q-element set [q] := {1, 2, . . . , q} 6
⊕ Bitwise XOR 6
X‖Y Concatenation of strings X and Y . 6
|X|, |C| length of a string X (cardinality of a set C) 8
Spongec,r,f ,pad,` Sponge construction (capacity c, bit rate r, block

function f , output length `)
7

SpGenC,r,ϕf ,pad,` The generalized Sponge construction (capacity set C,
bit rate r, internal map ϕf , output length `)

9

ϕf The general map between states 8
S̄, ϕ̄f Outer part of a state S ∈ {0, 1}r × C, S̄ ∈ {0, 1}r,

function ϕf : {0, 1}r×C → {0, 1}r×C with its output
limited to the part in {0, 1}r.

8

Ŝ, ϕ̂f Inner part of a state S ∈ {0, 1}r × C, Ŝ ∈ C, function
ϕf : {0, 1}r × C → {0, 1}r × C with its output limited
to the part in C.

8

M Array of messages, M = (M1,M2, . . . ,Mq), where
∀i,Mi = M i

1‖M i
2‖ . . . ‖M i

|Mi|r

12

|M|r The number of r-bit blocks in M, |M|r :=
⌈
|M|
r

⌉
. 6

Z Array of output strings 12
κ :=

∑q
i=1(ki − 1) The total number of evaluations of ϕf in q evaluations

of SpGen on Mi with outputs Zi.
18

ki := |Mi|r + |Zi|r The number of internal states in evaluation of
SpGen(Mi) outputting Zi.

18

∇-C(M,Z) The set of all ∇-c constrained by (M,Z). 19
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Flag-Assign The algorithm for assigning u, f , and n flags in ∇-c. 22
Flag(∇-cij) The flag of ∇-c ∈ p-∇-CF(M,Z), Flag(∇-cij) ∈

{u, f ,n}
21

∇-CF(M,Z) The set of all ∇-c constrained by (M,Z) with
Flag-Assign run on it.

23

p-∇-cf A particular assignment of states in Sponge evalu-
ations of (M,Z) with additional constraints for ϕf

being a valid function.

23

p-∇-CF(M,Z) The set of all p-∇-cf constrained by (M,Z) and ϕf . 23
P The set representing a particular placement of unique

and non-unique flags in p-∇-cf
24

p-∇-CF(M,Z, ∗) p-∇-CF(M,Z) with specified parameters ∗. 24
Calc The algorithm that outputs the cardinality of

p-∇-CF(M,Z, P ).
27

µ :=
∑q

i=1 |Mi|r The number of states with the next step being in the
squeezing phase of SpGen.

25

ζ :=
∑q

i=1

(
|Zi|r − 1

)
The number of states with the next state being in the
absorbing phase, κ = µ+ ζ.

25

T (S) The set of permutations from S to S, {ϕf : S → S |
ϕf is a bijection}

29
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A Direct proof of indistinguishability with permutations

Here we prove Theorem 16 by direct application of Theorem 4 instead of relying on the
PRF/PRP switching lemma. For this proof we need to generalize the average-case polyno-
mial method. We show how to use it if the probability of a certain input-output behavior is
not a polynomial but is close to a polynomial. This small generalization might prove useful in
other applications of the polynomial method. The following is a restatement of Theorem 16,
with a slightly worse bound.

Theorem 17. SpGenϕf
for a random permutation ϕf is quantumly indistinguishable from

a random oracle. More concretely, for all quantum algorithms A making at most q quantum
queries to SpGen, such that the input length is at most m · r bits long and the output length is
at most z · r bits long,

∣∣∣∣∣ P
ϕf

$←T (S)

[
A|SpGenϕf

〉(.) = 1
]
− P

h←R

[
A|h〉(.) = 1

]∣∣∣∣∣ <
π2

6
(2η)3(|C| − 1)−1, (74)

where η := 2q(m+ z− 2), R is defined according to Definition 6, and the set of permutations is
denoted by T (S) := {ϕf : S → S | ϕf is a bijection}. The domain is defined as S = {0, 1}r × C
for some non-empty finite set C.

Proof sketch. The proof follows the same reasoning as the proof of Theorem 8 with small
differences explained in the following. We define the family of distributions Ft with random
permutations ϕf from T (S). When we get to Eq (14) though, we need an argument different
from Lemma 9 because it does not hold for permutations in SpGen. We perform the same
analysis of the probability function as in the proof of Lemma 9. Only the final argument is
missing as we cannot use Theorem 4: P

[
∀i ∈ [2q] : SpGenϕf

(Mi, `i) = Zi
]

is not a polynomial
in |C|−1 if ϕf is a permutation. Instead we formulate a generalization of Theorem 4 in Lemma 19
below that leads to the claimed bound.

Let us now highlight the differences we encounter when analyzing the case of permutations
when following the reasoning of the proof of Lemma 9. The first and main difference is that the
expression for the probability of a single evaluation of ϕf (Equations (45)) changes to:

Flag(∇-cfij) ∈ {u, f} ⇒ P


ϕf (

(u∨ f )Sij⊕) = S |
∧

(i′,j′)≺(i,j)

(
ϕf (S

i′
j′⊕) = Si

′
j′+1

)

 =

1

2r · |C| −Uprev(i, j)
,

Flag(∇-cfij) = n⇒ P


ϕf (

nSij⊕) = S |
∧

(i′,j′)≺(i,j)

(
ϕf (S

i′
j′⊕) = Si

′
j′+1

)

 =

{
1 if S = ∇-cfij(2)

0 otherwise
.

,

(75)

where
Uprev(i, j) :=

∣∣∣
{
P i
′
j′ : (i′, j′) ≺ (i, j) ∧ Flag(P i

′
j′ ) ∈ {u, f}

}∣∣∣ (76)

is the number of unique states preceding the position (i, j). Note that we assume we have done
all steps leading to Eq.(45).

The product in Eq. (43) for p-∇-cf ∈ p-∇-CF(M,Z, ū) and for ϕf being a random permu-
tation evaluates not to Eq. (52), but instead to

(q,kq−1)∏

(i,j)=(1,1)

P


(ϕf (S

i
j⊕) = Sij+1

)
|

∧

(i′,j′)≺(i,j)

(
ϕf (S

i′
j′⊕) = Si

′
j′+1

)

 =

ū−1∏

i=0

1

2r · |C| − i . (77)
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Algorithm 5 also changes when we consider random permutations. We need to shrink the
set of possible states in the last column to (|C| −Uprev(P, i, ki)) (line 19 in Calc) and modify
the number of possible assignments of values of non-unique states (line 20 in Calc). The rest
is exactly the same, we will refer to the modified algorithm as CalcPer. The definition of the
modified N-Possibilities can be found in Appendix B.

Up to this point we have shown how to deal with combinatorial problems emerging from
changing the internal function to a permutation. The main problem is different though; for
random permutations the expression we derive in the last step of the proof in Section 6.4 is not
an expression in 1/|C|. The expression we end up with is similar to Eq. (66), but the probability
comes from Eq. (77):

p(|C|−1) =
∑

ūabs,uabs,ūsqu,usqu,P

CalcPer(P )

ū−1∏

i=0

1

2r · |C| − i . (78)

Unfortunately the above expression does not fit into the assumptions of Theorem 18 below
which is the basis of the polynomial method allowing us to bound the adversary’s advantage.

Theorem 18 (Theorem B.1. in [22] for ∆ = 1). Let p(λ) be a polynomial in λ of degree d

such that 0 ≤ p(0) ≤ 1, and 0 ≤ p(1/t) ≤ 1 for all t ∈ Z+ Then |p(1/t)− p(0)| < π2d3

6t for all
t ∈ Z+.

To deal with this problem we state a lemma relaxing a bit the requirements of Theorem 3.

Lemma 19. For every 2q pairs ∀i ∈ [2q] : (Xi, Y i) ∈ X × Y we define a function gj(1/t) :=
P

h←Ft

[∀i ∈ [2q] : h(Xi) = Y i], where j is the index enumerating different pairs. Assume that

there exists a ∈ N and for every j there exist polynomials p′j ,p
′′
j , such that for every j and every

t ∈ N with t > a, gj(1/t) is bounded from below and above by polynomials p′j ,p
′′
j respectively:

p′j

(
1

t− a

)
≤ gj

(
1

t

)
≤ p′′j

(
1

t− a

)
, (79)

such that p′j(0) = p′′j (0) = gj(0) and the degrees of the polynomials are d′ and d′′ respectively.

Moreover 0 ≤ p′j

(
1
t−a

)
and p′′j

(
1
t−a

)
≤ 1 for all t ∈ N with t > a. Then

∣∣∣∣ P
h←Ft

[
A|h〉() = 1

]
− P

h←F∞

[
A|h〉() = 1

]∣∣∣∣ <
π2(max{d′, d′′})3

6(t− a)
. (80)

Proof. Here we follow the proof of Theorem 7.3 in [22] to make sure all assumptions are fulfilled
to use the lemma stating that closeness of polynomials implies small adversarial advantage. Let

us say that P
h←Ft

[
A|h〉() = 1

]
− P

h←F∞

[
A|h〉() = 1

]
= ε, w.l.o.g. we can assume that ε > 0.

Also without loss of generality, using the fact that P
h←Ft

[
A|h〉() = 1

]
is a linear combination

of P
h←Ft

[∀i ∈ [2q] : h(Xi) = Y i] = gj(1/t) we can assume that all the coefficients in this

combination are real. Therefore, we have

ε =
∑

j

αj(gj(1/t)− gj(0)) ≤
∑

j

αj(p̃j

(
1

t− a

)
− gj(0)), (81)

where p̃j =

{
p′j if αj < 0

p′′j if αj ≥ 0
. Note that p̃( 1

t−a) :=
∑

j αjp̃j

(
1
t−a

)
is a polynomial of degree

at most max{d′, d′′}. If we set t′ := t − a, it is straightforward to verify that p̃ fulfills the
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assumptions of Theorem 18 above for all t′ ∈ Z+. As gj ,p
′
j ,p
′′
j , p̃ all take on the same value for

t→∞, we obtain that p̃(0) = gj(0), and hence the claim follows.

Now we just need to show that P[∀i ∈ [2q] : SpGenϕf
(Mi, `i) = Zi] is bounded by polyno-

mials and find their degree. We are going to show that there are p′,p′′ (indexed with j in the
statement of the lemma) that are polynomials and that fulfill the assumptions of Lemma 19 for
a = 1. For each set of pairs of inputs and outputs we consider g to be a sum like in Eq.(78).
To do that we need to distinguish between placements P that involve at least two consecutive
unique states and those that do not. Let us deal with the former case first. We can bound the
probability part of Eq. (78) as follows:

ū−1∏

i=1

1

2r · |C| − i ≤
ū−1∏

i=1

1

2r · |C| − (κ− 1)
=

(
1

2r
· 1

|C| − κ−1
2r

)ū−1

≤ 1

2r(ū−1)

(
1

|C| − 1

)ū−1

, (82)

ū−1∏

i=1

1

2r · |C| − i ≥
ū−1∏

i=1

1

2r · |C| ≥
1

2r(ū−1)

(
1− 1

|C| − 1

)ū−1( 1

|C| − 1

)ū−1

. (83)

Note that we have skipped the first term in the product that is supposed to range from 0 to
ū−1. We have done it because in the case we discuss, the first term that is output by CalcPer
necessarily involves |C| (not |C| − 1). Thanks to how we divide the product the final expression
is a polynomial in 1

|C|−1 . In the latter case, no consecutive pairs of unique states, we bound
every element of the product like in the above inequalities.

As for CalcPer we just treat |C| − 1 as the new variable. Note that now p′j and p′′j
are polynomials in (|C| − 1)−1. Polynomial p′′ has the same degree as the the polynomial
corresponding to g in the proof for functions, i.e. following the derivation of Eq. (68) it equals
d′′ = η = 2q(m+ z − 2). From the above lower bound however, we get that d′ = 2d′′.

The last assumption we need to check is for p′,p′′ to be bounded by 0 and 1 for |C| > 1.
Note that it is enough to show that p′ ≥ 0 and p′′ ≤ 1. We already know that p′ and p′′ bound
g. For the lower bound p′ ≥ 0 comes from the fact that all coefficients are positive (they equal

CalcPer(P )) and so is
(

1− 1
|C|−1

)
1
|C|−1 for |C| > 1. For the upper bound of g we need to

check that p′′ ≤ 1. Following the algorithm Alg. 5 we can see that CalcPer(P ) is bounded by
2r(ū−q)|C|(|C| − 1)ū−1, so as long as the number of terms in Eq. (78) is smaller than 2qr—which
is our implicit assumption—then p′′ ≤ 1.

The above discussion, together with Lemma 19 proves Theorem 17.

B Additional details

B.1 Auxiliary algorithms, functions

Let us consider the problem of assigning values to the non-unique states given some placement
P . Let us denote the number of non-unique flags n by n and the number of ”first” non-unique
states with flags f by f . We are going to analyze the combinatorial problem of assigning n
objects to f classes in a way that each class has assigned at least one object. Objects in a single
class are indistinguishable but are distinguishable between different classes. For example three
objects that we divide among two classes putting one object in the first class and two in the
second can be assigned in three ways: we put into the first class the first object or the second
object or the third. We do not count the fact that the two objects that are in class two can be
in one order or another.The number of permutations in such a problem in the general case of n
objects and f classes is given by

P (n;n1, n2, . . . , nf ) =

(
n!

n1!n2! · · ·nf !

)
. (84)

35



Note that the above formula requires that we specify the occupation of classes. These occupation
numbers are not fixed by the placement P so we also need to analyze these occupation numbers.
The occupations of the classes are defined by the possible distribution of objects among different
classes. Let us define the set of possible distributions:

D(n, f) :=
{

(n1, n2, . . . , nf ) ∈ Nf : ∀i ∈ [f ], ni ≥ 1, n1 + n2 + · · ·+ nf = n
}
. (85)

There is one more detail we need to add to properly count all possible assignments of non-
unique states; repeated values of each different f appear in P only after the initial unique state.
Let us denote by Πclass-ind(n;n1, n2, . . . , nf ) the set of permutations with classes of indistin-
guishable objects, enumerated by P (n;n1, n2, . . . , nf ). We need to implement the requirement
coming from the nature of working of Flag-Assign. The set of permutations after including
this constraint is

Π (P, n;n1, n2, . . . , nf ) := {π ∈ Πclass-ind(n;n1, n2, . . . , nf ) |
there are no objects in class i prior to the i-th state according to P} . (86)

Eventually we count the number of possible assignments of values of non-unique states:

N-Possibilities(n, f, P ) :=
∑

(n1,n2,...,nf )∈D(n,f)

|Π (P, n;n1, n2, . . . , nf )| . (87)

The most crucial observation of this subsection is that the number of possible assignments does
not depend on |C| and

N-Possibilities(n, f, P ) ≤ fn. (88)

The above is a trivial bound found by ignoring all structure and only counting the total number
of possibilities to put one of f values in every of the n places.

B.2 Auxiliary algorithms, permutations

In the case of permutations we need to add one constraint to N-Possibilities

Πper (P, n;n1, n2, . . . , nf ) := {π ∈ Πclass-ind(n;n1, n2, . . . , nf ) |
there are no objects in class i prior to the i-th state according to P ∧
non-unique n outputs of unique states (u ∨ f) have different values}. (89)

Eventually we count the number of possible assignments of values of non-unique states:

N-PossibilitiesPer(n, f, P ) :=
∑

(n1,n2,...,nf )∈D(n,f)

|Πper (P, n;n1, n2, . . . , nf )| . (90)
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