3 research outputs found

    Resource optimization for fault-tolerant quantum computing

    Get PDF
    In this thesis we examine a variety of techniques for reducing the resources required for fault-tolerant quantum computation. First, we show how to simplify universal encoded computation by using only transversal gates and standard error correction procedures, circumventing existing no-go theorems. We then show how to simplify ancilla preparation, reducing the cost of error correction by more than a factor of four. Using this optimized ancilla preparation, we develop improved techniques for proving rigorous lower bounds on the noise threshold. Additional overhead can be incurred because quantum algorithms must be translated into sequences of gates that are actually available in the quantum computer. In particular, arbitrary single-qubit rotations must be decomposed into a discrete set of fault-tolerant gates. We find that by using a special class of non-deterministic circuits, the cost of decomposition can be reduced by as much as a factor of four over state-of-the-art techniques, which typically use deterministic circuits. Finally, we examine global optimization of fault-tolerant quantum circuits under physical connectivity constraints. We adapt techniques from VLSI in order to minimize time and space usage for computations in the surface code, and we develop a software prototype to demonstrate the potential savings.Comment: 231 pages, Ph.D. thesis, University of Waterlo
    corecore