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The one-way quantum computing model introduced by Raussendorf and Biftysl. Rev. Lett.86, 5188
(2001)] shows that it is possible to quantum compute using only a fixed entangled resource knowlosisra
state and adaptive single-qubit measurements. This model is the basis for several practical proposals for
guantum computation, including a promising proposal for optical quantum computation based on cluster states
[M. A. Nielsen, Phys. Rev. Lettto be publishe quant-ph/0402005A significant open question is whether
such proposals are scalable in the presence of physically realistic noise. In this paper we prove two threshold
theorems which show that scalable fault-tolerant quantum computation may be achieved in implementations
based on cluster states, provided the noise in the implementations is below some d¢hreshotdvalue. Our
first threshold theorem applies to a class of implementations in which entangling gates are dgigliadn-
istically, but with a small amount of noise. We expect this threshold to be applicable in a wide variety of
physical systems. Our second threshold theorem is specifically adapted to proposals such as the optical cluster-
state proposal, in whiclmondeterministicentangling gates are used. A critical technical component of our
proofs is two powerful theorems which relate the properties of noisy unitary operations restricted to act on a
subspace of state space to extensions of those operations acting on the entire state space. We expect these
theorems to have a variety of applications in other areas of quantum-information science.
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[. INTRODUCTION basis in which a qubit is measured may depend upon the
A Overview outcome of earlier measurements. Remarkably, this two-

stage process is sufficient to simulate any quantum circuit

One of the most surprising recent developments in quanwhatsoever.
tum computation is the insight thafuantum measurement  More recently, an apparently quite different teleportation-
can be used as the fundamental dynamical operation in laased[4] approach to measurement-based quantum compu-
guantum computell,2]. This insight has significant impli- tation was developed by Niels¢g]. This approach is based
cations for our theoretical understanding of how quantunon the idea now known as gate teleportation, introduced by
computers operate, and also for the development of practicielsen and Chuangb], and further developed by Gottes-
proposals for quantum computing. man and Chuang[6]. When it was first introduced,

Historically, the first measurement-based model for quanteleportation-based quantum computation appeared to be
tum computing was thene-way quantum computelevel-  quite different from the one-way quantum computer, but sub-
oped by Raussendorf and Brieddl]. A one-way quantum Sequent work7-9] has provided a unified conceptual frame-
computation is performed in two stages. In the first stage a0k in which both approaches may be understood.

entangled many-qubit state known as thester stateis pre- Although the measurement-based models of quantum
omputation represent an important conceptual advance,

pared. This is_ a fixed entz_ingled state that does not de_pend ?here is an important caveat, namely, that the measurement-
the problem instance being solved by the computation. Iny P ’ Y,

deed, when the one-way quantum computation is being use%?nsfg gg?eéisssiigv]iyzisllt grﬁgra;l'%lsr afrrt(a)r%arrr]lgig eOUtt c? errrl:zﬁgy.
to simulate a quantum circtif1] shows that the identity of measurement-based models scalable we must d,evelop tech
the cluster state can be made very nearly independent of ”}ﬁques for combatting noise in those models.

details of the circuit being simulated, with the only depen-

. e The challenge posed by noise has been met in the quan-
dence being on thdepthand breadthof the circuit. In the ) ¢ircuit model of computation with the development of

second stage of a one-way quantum computation a SEqUENGR impressive theory ofault tolerance providing a large

of single-qubit measurements is performed on the clusteoqy of techniques which can be used to reduce the effects
state. These measurements ad@ptive in the sense that the ¢ hoise on quantum circuits. The culmination of the theory

of fault-tolerance is théhreshold theoremwhich states that
for physically reasonable models of noise, and provided the

*Electronic address: nielsen@physics.ug.edu.au; URL: noise is below some constahtesholdvalue, it is possible to
www.ginfo.org/people/nielsen/ use quantum circuits to efficiently simulate an arbitrarily

"Electronic address: dawson@physics.uq.edu.au; URL: long quantum computation with arbitrary accuracy. Although
www.physics.ug.edu.au/people/dawson/ the threshold remains to be experimentally confirmed, there

For a review of the quantum circuit model of quantum computa-is now general agreement that, based on our best theoretical
tion, see[3]. understanding of quantum noise, the threshold theorem

1050-2947/2005/7%)/04232326)/$23.00 042323-1 ©2005 The American Physical Society


https://core.ac.uk/display/14985812?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

M. A. NIELSEN AND C. M. DAWSON PHYSICAL REVIEW A71, 042323(2009

solves the problem of noise in the quantum circuit model oferror-correcting properties of the original fault-tolerant cir-
computation. That is, quantum noise poses no problem ofuit, showing this turns out to be nontrivial. The key is to
principle for quantum computation, only thgery signifi-  prove that noise in a cluster-state simulation of a quantum
cany practical problem of reducing noise levels below thecircuit can be mapped onequivalent noisén the quantum
threshold value. For a survey of the theory of fault tolerancesircuit. Provided that mapping has suitable properties, a
and the threshold theorem, see Chap. 193f and refer-  threshold theorem then follows. The greater part of this paper
ences therein. ) . is spent constructing such a mapping.

The purpose of the present paper is to develop similar Thjs giscussion highlights a general point worth noting.

fault-tolerant threshold results for several measurementy . paper provides a way of taking an arbitrary quantum
based models of quantum computation, focusing primarily

dels derived f th A ¢ ircuit and then simulating it in a fault-tolerant fashion in the
on models derived from the one-way quantum computer 0Fluster-state model of computation. We do not, however, pro-
Raussendorf and Briegel. We refer to this entire class o

models as theluster-state model of quantum computation . way of making eluster-state:omputaﬂo_n fault
gnlerant, except insofar as a cluster-state computation may be

to emphasize the crucial role played by cluster states. Not X o .
that we use the term “cluster-state model of quantum Com[egarded as a special type of quantum circuit computation. It

putation” in a rather loose sense, using it to denote an entir¥ould be interesting to investigate more direct fault-
class of models based on cluster states. We reserve the teffierance constructions applicable to an arbitrary cluster-state
originally suggested ifil]. sibility of scalable quantum computation in the cluster-state
Our primary motivation in studying fault-tolerance in the model, the present approach is sufficient.
cluster-state model is to establish that the cluster-state model
can be used as the basis Bwalablepractical proposals for .
quantum computation. Although several proposals for ex- B. Optical cluster states and fault tolerance
Eenmentgl fligntumhcomputatlmn with Eluster %atez ha\/lg A topic of special interest in the present paper is the op-
een mad¢l,10], such proposals cannot be considered scalica| cluster-state proposal for quantum computation sug-
able unless fault-tolerant methods of implementation are deseagteq by Nielsefil0]. Optical systems offer a number of
Xgﬁpﬁgétggr:ruziﬁailedsvtv; gte;zls()pmrgterfgggstgg{ ;?glgmlﬁgzrj%gniﬁcam experimental advantages for quantum computing,
i a5vide variety %f practical probosals. PP fhd thls proposal thus offers a very promising approach to
Prior work on the problem of fault-tolerant computation experimental quantum computanon. However, the optical
ﬁl_uster-state proposal also differs from most quantum com-

with cluster states has been reported in Chap. 4 of Raussen- ) o .
dorf's thesis[12]. This work obtained a threshold for a class PUling proposals in that it is based on entangling gates that

of noise models in which Pauli errors occur probabilistically O™y Work nondeterministicallyThis nondeterministic nature
in a cluster-state computation. Our threshold result applies t80Ses special difficulties when attempting to prove a thresh-
a more general noise model that is likely to be more realisti©!d for the optical cluster-state proposal. Followiig], we
in many physical systems; subject to some assumptiondoWw briefly review some background on this proposal that
about locality, we allow arbitrary non-Markovian noise to Will help the reader understand how it fits into the present
occur in the computation, and even allow errors to occur irdaper.
the accompanying classical computation. Thus, our work A priori, optics offers significant advantages for the
should be viewed as extending and complementing the apmplementation of quantum computation, such as the ease of
proach taken ifl12]. We note that independent work extend- performing basic manipulations, and long decoherence
ing [12] is also being undertaken by Raussendorf and Briegelimes. Unfortunately, standard linear optical elements alone
[13]. are unsuitable for quantum computation, as they do not en-
What is it that makes proving a fault-tolerant threshold inable photons to interact. This difficulty can, in principle, be
the cluster-state model nontrivial? The obvious approach toesolved by making use of nonlinear optical elements
proving a threshold is to take the quantum circuit that we[14,15], at the price of requiring large nonlinearities that are
want to make fault-tolerant, convert it to a fault-tolerant at present extremely difficult to achieve.
quantum circuit using the standard prescriptions, and then An alternate approach was developed by Knill, Laflamme,
simulate the resulting circuit using a cluster-state computaand Milburn(KLM) [16], who proposed using measurement
tion. It seems physically plausible that noise occurring in theto effect entangling interactions between optical qubits. Us-
cluster-state model of computation should then be correcteihg this idea, KLM developed a scheme for scalable quantum
by the error-correcting properties of the original fault- computation based on linear optical elements, together with
tolerant circuit. high-efficiency photodetection, feedforward of measurement
Two difficulties obstruct this proposal. The first difficulty results, and single-photon generation. KLM thus showed that
is that the qubits in the cluster tend to degrade before thegcalable optical quantum computation is in principle possible
are measured. We will see that this difficulty can easily beusing relatively modest resources. Experimental demonstra-
overcome by building up the cluster in parts, so that no partions[17-21 of several of the basic elements of KLM have
of the cluster is allowed to degrade too much before beinglready been achieved.
measured. Despite these impressive successes, the obstacles to fully
The second difficulty is more serious. While it is plausible scalable quantum computation with KLM remain formi-
that noise in the cluster-state computation is corrected by thdable. The biggest challenge is to perform a two-qubit entan-
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gling gate in the near-deterministic fashion required for scalods that are far too pessimistic. Our philosophy is that the
able quantum computation. KLM propose doing this using groblem of understanding the threshold is best split into two
combination of three idea$l) Using linear optics, single- parts. In the first part, one attempts to rigorously prove the
photon sources and photodetectorsndeterministicallyer- existence of a finite threshold for some large class of noise
form an entangling gate. This gate fails most of the time,models. In the second part, one attempts through a combina-
destroying the state of the computer when it does so, and g¥n of numerical and analytic work to obtain a realistic es-
is not immediately suitable for quantum computation. Sevtimate of the threshold for some specific and physically-
eral variants of this gate have already been experimentalljtetivated noise model. In this second part it is much more

demonstratefi1 7—21. (2) By combining the basic nondeter- feasonable to rely on numerical evidence and heuristic rea-
ministic gate with quantum teleportation, a class of nondeSoning, since results for specific noise models can always be

terministic gates which are not so destructive of the state o‘fheCkEd by computer simulatiqand ultimately by experi-

. L meny. Examples of this kind of work for quantum circuits
th.e c.omputer is found3) By comblnmg the gates fror(g) may be found if23-27, and references therein. Our focus
with ideas from quantum error correction, the probability of

) . ) , in the present paper has been on the first part of this program,
the gate succeeding can be improved until the gate is ne""B“btaining a rigorous proof that a finite threshold exists. De-

deterministic, allowing scalable quantum computation. tailed numerical simulation and optimization of the threshold
The combination of these three ideas allows scalablgjye for realistic noise models is underway, and will be
quantum computation, in principle. In practice there arereported elsewher8].
enormous obstacles to performing even a single near- The second issue not fully addressed in this paper relates
deterministic entangling quantum gate in this fashion. Theg the noise model used in our analysis of the optical cluster-
proposal of[10] eliminates much of the difficulty, com- state proposal for quantum computation. One of the most
pletely removing stef3), and obviating the need for all but significant sources of noise in any optical implementation is
the simplest versions of ste@).? This is achieved by com- likely to be photon loss which is not explicitly dealt with in
bining some of the simplest elements of KLM with the our model. This is discussed further in Sec. V B.
cluster-state model of quantum computation. The resulting This causes the state of the optical qubit to “leak” from
proposal puts near-deterministic entangling quantum gatethie degrees of freedom associated with the qubit out into
within experimental reach, and thus offers an extremelysome other dimensions of the physical state space. In the
promising approach to quantum Computation’ pro\/ided suitcontext of threshold theorems, such noise is known as a
able methods for dealing with noise can be developed. “leakage error,” and there are standard techniques for dealing
A central aim of this paper is to obtain a threshold for thewith such errors in the theory of fault tolerance. However,
nondeterministic cluster state mode|[@ﬂ] It is worth men- our threshold analysis for the cluster-state model is based on
tioning, however, that the methods we will develop are alsghe recent threshold theorem proved by Terhal and Burkard
applicable to other schemes involving the efficient increment29], and that threshold does not explicitly deal with leakage
tal construction of cluster-states with nondeterministic gatesgrrors. While it seems extremely likely to us that the result of
The proposal of Barrett and Kdi.1], for example, builds up  [29] can be patched so that leakage errors are accounted for,
the cluster by nondeterministically adjoining small linearWwe have not worked through the analysis in detail. Rather
chains rather than the microcluster method used in Sec. V. A1an do so, in this paper we restrict ourselves to a brief
straightforward modification of this section would allow a discussion of leakage, deferring full investigation of this is-

threshold for alternative schemes to be obtained. sue to a future publication. o
The structure of the paper is as follows. We begin in Sec.

Il by defining a measure of how much noise occurs in a
quantum information processing task. We call this measure
In this paper we prove two threshold theorems for clusterthe error strength and prove several simple properties of the

state quantum computation. The first is a general thresholdrror strength that will be useful later in the paper.

theorem applicable to a variety of possible implementations Section Il also contains two important technical results,
of cluster-state computation, assuming that deterministic enwhich we dub thefirst and second unitary extension theo-
tangling gates are available. The second is specificallyems Roughly speaking, these results are applicable to situ-
adapted to the optical cluster-state proposal for quanturations in which two unitary operationd and V act in a
computation. Taken together, these theorems show that for similar fashion on a subspa&mof state space. Of course, just
wide variety of possible physical implementations, noisebecauseU andV act similarly on a subspace, it does not
poses no problem of principle for fully scalable cluster-statefollow that they have similar global actions on state space.
quantum computation. However, the theorems we prove guarantee that there exist

Before describing in detail the structure of the paper, it isunitary extensionsJ andV of the restrictions Ulsand Vs

worth noting two issues that we do not fully address. The . ~ ~ .
. . ; L : respectively, such thdt) and V have approximately equal
first of these issues is the determination of a numerical valug . . :
. actions everywhere on state space. These unitary extension
for the threshold. Although we do obtain bounds on the o )
theorems are critical to our later analysis of fault tolerance.

threshold, those bounds are obtained through analytic met Jlore generally, we believe that these results are of substan-

tial interest independent of their application to fault toler-
Another promising proposal for optical quantum computing ance, and likely to find application in other areas of quantum
which shares these attributes[22]. information science.

C. Content of the paper
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Section Il concludes with a review of the content of theus to infer a threshold theorem for noisy cluster-state com-
threshold theorem for quantum circuits. We focus our attenputation.
tion on the threshold theorem proved recently by Terhal and Section V extends these ideas to the optical cluster-state
Burkard [29], extending earlier work of Aharonov and proposal for quantum computation. The reason the results of
Ben-Or[30,31. The threshold of29] is unique in thatitis  Sec. IV cannot be immediately applied is that the entangling
specifically designed with non-Markovian noise in mind. gates used in the optical cluster-state proposal are nondeter-
While several of the_other known variants of the _thresh_oldministic. We resolve this problem by devising an approach to
theorem can cope with some level of non-Markovian noisecomputation in which the nondeterministic entangling gates

those other variants are designed primarily with the case o, he treated as deterministic entangling gates, subject to a
Markovian noise in mind. This is important for us as we will small amount of additional noise. This enables us to map

see that non-Markovian noise arises naturally in the analy5|ﬁOise in the optical cluster-state proposal into equivalent

of fault-tolerant cluster-state quantum computation, even if_~." ~ . L

the actual physical noise occurring in the cluster-state comyoise I the determlmsfuc cluster-state model, and then_ use

putation is Markovian the result of Sec. IV to infer a threshold theorem for optical
In Sec. lll we describe the cluster-state model of quantunﬁ:IUSter'.s’tate quantlur(? corr:wputatlon. ith ‘ |

computation. Rather than providing a detailed proof of how S€ction VI concludes the paper with a summary of results,

the model workgwhich is available elsewhereve describe and a discussion of the outlook for further developments.

the model through some simple examples. We also discuss

ways of alleviating one of the key difficulties that arises Il. NOISE AND FAULT-TOLERANT

when attempting to perform fault-tolerant quantum computa- QUANTUM CIRCUITS

tion with cluster states, the tendency of qubits in the cluster .

to degrade before they are measured. We conclude with a In. order to prove athreshqlq for cluster—statg computation

brief review of how the cluster-state model of quantum com-"€ first need a way of describing quantum noise, and quan-

putation can be combined with the ideas of KLM to obtain at|fy|ng_ !ts effects. In Sec. Il A we mtroduce a measure that
scheme for optical quantum computation. quantifies the effects of quantum noise, describe some prop-

erties of that measure, and describe the unitary extension

Section IV is the heart of the paper, stating and provin .
our first threshold theorem for cluster-state computatior?.theorems‘ In Sec. II B we review the threshold theorem for

More precisely, what we prove is that it is possible to simy-duantum circuits proved by Terhal and Burkg@s).
late an arbitrary quantum circuit using a noisy cluster-state
computation, with arbitrary accuracy and only a small over- A. Error strength

head in the physical resources required, subject to reasonable syppose we have a quantum systén,and we wish to
constraints on the physical resources available, and on thehplement a unitary operatiod o on that system. Unfortu-
noise afflicting the implementation. nately, the system is not completely isolated from its envi-
The sequence of ideas used to prove this threshold thegonment,E, and thus the true evolution of the system will be
rem is conceptually rather simple. Step one is to translate thgescribed by some unitary evolutidfye acting on both the

quantum circuit that we want to simulate into a fault-tolerantsystem and the environment. We define éner strengthor
circuit, using the standard prescriptions for making a circuithoise strengttof this operation by

fault tolerant. At this stage we assume there is no noise in the

computation. Step two is to translate the fault-tolerant circuit Aq:e(Uq,Voe) = min[Voe - Ug ® U], 1)

into a cluster-state computation, again using standard pre- Ve

scriptions. Step three is to carefully specify a procedure fowhere the minimum is over all unitary operatiods on the
physically implementing the cluster-state computation, a prosystemE, and the norm is the usual operator norm.

cedure that avoids the degradation of parts of the cluster that We will use the error strengtho.e as our principal mea-
was mentioned above. The idea is to build up only part of theure of noise in the implementation of quantum computation,
cluster at any given time, adding extra qubits into the clustewhether it be by cluster-state methods, or by quantum cir-
as required. Up until this step we assume that all operationsuits. AlthoughAq.e has been defined only when the ideal
are perfect. Step four is to introduce noise into the descripeperationUg, is unitary, we will see later that it can also be
tion of the cluster-state computation, as would occur in arused to understand noise in operations that may not be uni-
actual implementation. The most complex and critical steptary, such as measurement and state preparaligp.satis-
step five, is to show that the noisy cluster-state computatiofies several properties that will be required later in this paper.
is equivalent to theriginal fault-tolerant circuit, with some Proposition 1 (Chaining property)Let Ué, ...,ug be
noise added into the circuit. That is, we want to map noise inunitary operations on the systef, and V(lgE, ... .Voe be

the cluster-state computation back omtguivalent noisen  unitary operations on the combined syst@&. Then

the original fault-tolerant circuit. We will see that this map-
ping has the property that provided the noise in the cluster- -
state model is of an appropriate form, and not too strong, it is Age(Ug--- UG Voe. .- Voo < 2 Aqe(UgVoe). (2)
equivalentto noise in the original fault-tolerant circuit which =

is only slightly stronger, and which is of a form which can be = The chaining property tells us that the total error strength
suppressed by the usual fault-tolerance constructions fasf a sequence of imperfect operations is less than or equal to
guantum circuits. This mapping of noise models thus enablethe sum of the individual error strengths. We note that this

m
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proposition and its proof is similar to lemma 1 in Sec. | C of =App(UnVap). (12
[29]. 4 o o
Proof. Choose UL so that Aqe(Uh, Viye) =([Vie— U n

The next proposition helps in commuting noisy operations
past one another.
Proposition 4 Let Ug and Vg be commuting unitary op-

®UL|, and defineAl EViQE—UJQ® UL. A straightforward in-
duction onm can be used to establish the formula

m _ erations on a quantum syste@n Let Uge and Ve be noisy
Ve Voe=(Ug...UD) & (Ug...UD) + > (UG ... U5t versions of these operations involving also an environment
i=1 E. Then there exist unitariebloe and Voe such that(a)
L N ~ o~ =
® Ug...UEHAIVEE . VEE. (3)  UgeVoe=VoeUoe:  Aqe(Ug,Uge)=Aqe(Vo,Voe);  and

The result follows by subtractingUg...Ug) @ (Ug...Up) Aqe(Vo:Voe) <Aqe(Uq, Uge)-

from both sides of Eq(3), and applying the triangle inequal- _ 11iS Proposition tells us that I o andVq commute, then

ity. applymg a noisy version dﬂQ foIIowec_j by a noisy version
To map noise from the cluster-state model to the circui®f Vo IS €quivalent to applying a noisy version W, fol-

model we will use a technique that involves changing the se wed by a noisy version ollo. Furthermore, the noise

of systems considered to be part of the environment. ThE'€NIths in the new versions bf, and V,, are no worse

following two propositions help us understand the behaviot@n in the originals, except for interchanging the roleJef

of the error strength when the environment is changed in thiédeQ' ) o .
g g Proof. Using the definition ofAq. we may choose uni-

way. ) :

Proposition 2 Let A,B andC be three quantum systems, taresUg andVe, and matrices\, and Ay, such that
_anq letUa, Ug, Vagc be unitary oper_ations acting on systems Uge=(Ug® Ug)(1 +Ay), (13
indicated by the respective subscripts. Then

Apsc(Ua Vasd < Apgc(Ua ® Ug,Vagd- (4) 180 = Aqe(Uo Uoe) 149

Proof. The proof is immediate from the definition Af,.¢ Voe=(+Ay)(Vo® Vg), (15
and the fact that the set of unitary matridégc on BC is a
superset of the set of unitary matrices of the fdug® U, AVl = Ag:e(Va, Vap)- (16)

whereUs is the (fixed) given matrix With these choiced.+A,, andl +A, are easily verified to be

Apgc(UaVagd = T;?”VABC_ Up ® Ugd) (5)  unitary operations 0QE. We see that
VoeUge= (1 +Ay) (Vo ® Ve)(Ug ® Ug)(I +4y)  (17)
=minVasc=Ua® U @ Ud (6) =(1+4)(Ug ® Ve (Vo ® Ug)(1 +Ay),  (18)
where we used the commutativity bf, and Vg in the sec-
=Apgc(Ua ® Ug,Vago)- (7) ond line. The proof is completed by choosingqe
0 =(1+A)(Ug® Vi) andVge=(Vo® Up)(1+Ay). 0

Proposition 3 Let A, B andC be three quantum systems, 10 Prove our threshold theorems for cluster-state compu-
and letU,, Vg, Ve be unitary operations acting on systemstation- we need two other theorems, which we call the first

indicated by the respective subscripts. Then and second unitary extension theorems. These results are not
phrased directly in terms of the error strendth.g, but we
Apgc(Upa,Vag ® Vi) < Apg(Up,Vap). (8)  shall see later in the paper that these theorems have signifi-

cant implications for the error strength.

Proof. Similarly to the proof of the previous proposition, e first unitary extension theorem may be motivated by
the proof is immediate from the definitions and the fact thaty,o following problem. Suppos¥ is a noisy unitary opera-

the set of unitary matricedgc on BC s a superset of the set tjon approximating a noiseless unitary operation (Note
of unitary matrices of the fornUg® V¢, where Ve is the 1ot U and V here act on the same state spademight

(fixed) given matrix: correspond tdJ,® U in our earlier notation, with/ corre-
Apac(UnVag ® Vo) §ponding t_oVQE.) F_or some physical reason we are only
ABCLEA TAB S TC interested in the action & andV on some subspac®of the
=min|Vag ® Ve — U ® Ugd| 9 total Hilbert space. That is, we know on physical grounds
Usc that all inputs to the operations are constrained to be in that

] subspace. Furthermore, there is another unitary operEtion
<”J'”||VAB® Ve-Ua®Ug® V| (100 which actsidentically to U on the subspac&. A natural

¢ question is whether we can find a unitary operaﬁbwhich
=min|Vag - U ® Ug| (11) acts_ldentlc~ally toV on the subspac§, a_md so thatv ap-
Us proximatesU at least as well a¥ approximatesJ.
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Remarkably, such an extensi&halways exists, and the and ancilla qubits is that the ancillas may be brought into the
proof of the first unitary extension theorem shows how jtCOmputer partway through a computation, used as part of the
may be constructed. We believe this theorem has consideflbsequent computation, and then discarded at some later
able independent interest in its own right, quite apart fromtime. The third type of system is thenvironmentwhich is

the applications later in this paper to fault-tolerant computanot under control. _
tion with cluster states. The computation is represented by a sequence of unitary

operations. ldeally, these operations would be applied just to

Theorem 1. (First unitary extension theorerhpt U, U the register and ancilla qubits, but inevitably they involve
andV be unitaries acting on a Hilbert spateSupposes is 9 . . d ’ ably y Invov:
some interaction with the uncontrolled environment. It is this

a subspace of such thaty andU have the same action on jyteraction which causes noise in the computer. We will find
S i.e., Uls= Uls (Note that we do not assume thatandU it convenient to assume the interaction with the environment

leave the subspac®invariant, so U|s and D|S should be IS unitary; by making the environment sufficiently inclusive
considered as maps froBinto T.) Then there exists a uni- the laws of quantum mechanics ensure we may always make

tary extensiorV of Vs to the entire spac& such that SUCh.ar.‘ asgumption. . .
y s b Within this framework, our noise model may be described

||\~/_D|| <|v-u. (19) as follows. Each qubit in the computer, whether a register
_ S _ qubit or an ancilla qubit, has associated with it its own envi-
The proof of this theorem is given in Appendix A. ronment. So, for example, if we label the qub@s,Q,, ...,

The second unitary extension theorem answers a questiaien the corresponding environments would be labeled
similar in spirit, but not identical, to the question answeredg,|E,,.... The keyassumption we make about noise is that
by the first unitary extension theorem. LldtandV be uni-  noninteracting qubits have noninteracting environments
tary operations acting on a vector spdcevith a subspac&.  More precisely, suppose as part of the computation we want
Suppose Uls and V|s are close, i.e.| Uls= V|d| is small.  to attempt some unitary gaté on qubitQ;. This might be
Can we argue that there exists a unitary operatiextend-  the identity gate, representing quantum memory, or it might
ing V|s and such thafu-V| is also small? The second be a more complex gate, like a Hadamard or Pauli gate. In

unitary extension theorem shows that this is always true. "€@lity, this gate will be noisy, due to interactions with the
Theorem 2. (Second unitary extension theorehgt U €nvironment. Our assumption is that the real noisy operation

andV be unitary operation acting on (finite-dimensional 'S & unitary evolution acting onQ; and its environmere;,
inner product spac@. SupposeS is a subspace of. Then with the other qubits and their environments not affected. In

. . .= ~ a similar way, if we attempt a two-qubit operatibhbetween
there exists a unitary operatidhsuch that V|s= V|s and qubits Q; and Q,, we assume that the real noisy evolutién

Y _ may involve the qubit€);,Q,, and the corresponding envi-
|U-VI=2]Uls= Vid. (20 ronmentsk;, E,, but not Jthe other qubits or their environ-
The proof of the second unitary extension theorem isments. With these assumptions, we say the noise in a noisy
given in Appendix A. Note that this theorem may easily becircuit is of strength at mosy, if each ideal gatdJ; in the
restated in the language of isometries, if that is more to one’sircuit is approximated by a noisy gat¥; such that
taste. It is also worth noting that the second unitary extensiorAQ;EQ(Uj ,Vj)=< 7, whereQ is the qubit or qubits involved in
theorem implies a weaker version of the first unitary extenthe gate, andg is the corresponding environment or envi-
sion theorem. In the notation of the first theorem, the seconedonments.
theorem implies that there exists a unitary extensioof We refer to the assumption that noninteracting qubits have
Vls such thad|V—D||<2|| D|s_ Vid=2|u-V. nomngeractlng enwronme_nts.as tharality as;umpuon‘or.
noise” Physically, the motivation for the locality assumption
. o is that each environment is well localized in space, and that
B. Fault tolerance in the quantum circuit model environments can only interact with one another when two

The threshold for cluster-state computation proved in thigiubits are brought together to interact in a quantum gate.
paper is based on the threshold for quantum circuits proved Importantly, Terhal and Burkard do not make any Mar-
by Terhal and Burkard29]. In this subsection we review kovian assumption. That is, each environment can have an
Terhal and Burkard’s result. We begin with a description ofarbitrarily long memory. So, for example, we may perform a
the assumptions they make about quantum circuits, includingequence of gates in whic}y first interacts withE;, which
the noise model, before stating their main theorem. Note thadhen passes information oni through a subsequent gate,
the noise model used by Terhal and Burkard is the basis fdhen ontoE; through another gate, and finally corrupts qubit
our noise model for cluster-state computation, described if4, say. This is in contrast with many other variants of the
Sec. IV A. threshold theorem, where Markovian noise is assumed, i.e.,

Terhal and Burkard split the total system up into three
types of subsystem. First, there aegister qubitswhich can  3Terhal and Burkard consider even more general noise models,
be controlled and used for computation. These qubits arghich may be of interest in certain circumstances. However, the
present through the entirety of the computation. Secondpcality assumption is sufficiently strong to cover a very wide class
there areancilla qubits which may also be controlled and of physically interesting noise models, and so we restrict attention
used for the computation. The difference between registeto noise models satisfying this assumption.
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qubits are assumed to have independent and memoryless en-Theorem 3. (Threshold theorem for quantum circuits
vironments. [29]). There exists a constant threshojgi>0 for quantum

In addition to the locality assumption for noise, Terhal circuit computation with the following property. Letbe the
and Burkard make three important additional assumptionsumber of locations in a perfect quantum circi@t, which
about how quantum circuits are performed. outputs the probability distributiop. Let e>0. We can ef-

(1) It is possible to perform quantum gates on differentficiently construct a noisy quantum circuff’, with a total
qubits in parallel. Physically, this requirement is due to thenumber of locationsnpolylog(n?/€), and such that if the
fact that error correction must constantly be performed on alhoise inC’ satisfies the locality assumption and is of strength
the qubits, even if one is merely attempting to maintain themat most s, then the output distributiop’ from C’ satisfies
in memory. It is possible to prove that parallelizability is a |p-p’[;<e.
necessary condition for a threshold theorem to apply. Terhal and Burkard’s construction @’ is based on a

(2) It is possible to initialize fresh ancilla qubits in the particular type of quantum error-correcting code dubbed a
state|0) just prior to their being brought into the computa- computation cod®y Aharonov and Ben-Ofdefinition num-
tion. Physically, this requirement is due to the fact that theber 15 in[31]). As a consequence of this construction, the
ancillas are used as an entropy sink to remove noise from theircuit C’ is built up out of a special restricted class of quan-
computation. To be effective in this capacity they must startum gates, gates that can be implemented in a fault-tolerant
in a low-entropy state. It is possible to prove that the requiremanner. For example, it is possible to consti@tusing just
ment for fresh ancillas is a necessary condition for a thresheperations from the following restricted set: preparation of
old theorem to apply32]. qubits in the state|0); the identity gate, i.e., quantum

(3) Excepting ancilla preparation, all dynamical opera-memory;H (Hadamarylgates,Z 4, andZ 5 gates, wher&,
tions applied during the computation are unitary, up until theis the rotation of a single qubit b§ about thez axis of the
final measurement at the end of the computation. This is ndBloch sphere; and controlledoT gates. As noted earlie€’

a necessary feature of a threshold theorem, but is a feature dbes not include any measurement or classical processing of
the threshold of Terhal and Burkard. data, except at the output; all dynamical operations are fully

The third assumption, that the computation is performedinitary.
using only unitary operations, is rather inconvenient from For our purposes in this paper it is convenient to replace
our point of view, since the cluster-state model of quantumC’ with an equivalent circuit built up from a different set of
computation inherently involves many measurements petbasic operations. We make this replacement in two stages.
formed during the computation. One feature of our proof isThe first stage is to replace the operations in the citCuivy
that it involves the replacement of measurements and classdperations from the following set: preparations of a qubit in
cal feedforward by equivalent unitary operations. The reasothe state|+); the identity gate; gates of the for¥,Z,; and
we use the all-unitary model is that we need a thresholdhe controlledZ gate, which we shall caltPHASE That this
theorem which allows non-Markovian noise, and at presentan always be done follows from well-known quantum cir-
this means using Terhal and Burkard’s all-unitary model. Fu-cuit identities. We call the resulting circu@”.
ture improvements to the threshold theorem for cluster states The second stage is to replace the operation€"irby
may come by developing threshold results for qguantum ciroperations from the following set: preparations of a qubit in
cuits which allow both non-Markovian noise and measurethe state|+); gates of the formHZ,; and the gate(H
ment during the computation. ® H)cpPHASE We refer to this as theanonical sebf allowed

To conclude preparation for the statement of the thresholdperations. To see that this can be done requires a little care,
theorem we need a few final items of notation and nomeneue to the absence of the identity gate from the canonical set.
clature. It will be convenient to assume that each unitaryThe trick is to simulate each gate@{ by two gates from the
operation performed during the computation takes the sameanonical set, as follows:| —=HH; X,Zz—HZ,HZ;;
amount of time,At, and so the circuit may be written as a cpHASE— (H® H)(H ® H)CPHASE
sequence of unitary operations performed at tine§,t We call the circuit that results when these substitutions are
=At,t=2At, and so on. We definelacationin the circuitto  madeC”, and refer to it as theanonical formof the fault-
be specified by a triplékAt, U, Q) consisting of the tim&At  tolerant circuitC'. It is clear on physical grounds that the
at which the gatéJ is performed on a qubit or ordered pair canonical form also satisfies the threshold theorem. Alter-
of qubits,Q. Our measure of the total size of the circuit is the nately, a rigorous proof of this fact follows from the chaining
total number of locations in that circuit. Note that it is im- property for error strength, proposition 1. The essential idea
portant to count locations at which the identity gate is ap-of the proof may be illustrated by example: suppose an iden-
plied to a qubit. tity gate in the original circuiC’ has been replaced by two

Computation is concluded by measuring the computer irconsecutived gates in the canonical circu@”. Provided the
the computational basis to produce a probability distributiorH gates both suffer from noise of strength less thgii2,

p. The goal of fault tolerance is to take a perfect quantumproposition 1 ensures that their product is equivalent to doing
circuit which outputs a probability distributiomand to con-  the identity gate with error strength at mogt. Thus, while
struct a fault-tolerant quantum circuit that may be subject tcthe thresholdy;, for C” may be somewhat reduced from the
noise, but nonetheless outputs a probability distribupon threshold forC’, #y, it is reduced at most by some constant
which is closeto p in some suitably defined sense. As thefactor.

measure of closeness we use telmogorov distancel|p Summing up, we have the following restatement of the
-p'lh= %EX| p(X)=p’(X)]. threshold theorem in the form that will be used for our analy-
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FIG. 2. A two-qubit quantum circuit. Without loss of generality
we may assume the computation starts with each qubit in+#he
FIG. 1. A simple cluster state. Note that each circle represents & (|0)+|1))/v2 state, since single-qubit gates can be prepended to

single qubit in the cluster. the circuit if we wish to start in some other state. The two-qubit gate
is acPHASEgate. The boxes are single-qubit gates of the fbiry,
sis of fault-tolerant cluster-state quantum computation. whereH andZ, are as defined in Sec. Il B. Note that by composing

Theorem 4 (Threshold theorem for quantum computationthree of these gates we can obtain an arbitrary single-qubit_gate.
with circuits in canonical form) There exists a constant 'NUS gates of the forrhiZ,, together withcPrase gates, are uni-
threshold 7,0 for quantum circuit computation with the Versa for quantum computation.
following property. Letn be the number of locations in a
perfect quantum circuiC, which outputs the probability dis- Cluster, using single-qubit measurements and feedforward of
tribution p. Let e>0. We can efficiently construct a noisy the measurement results to control the bases in which later
quantum circuitC”, in canonical form(defined abovke with qubits are measured. The output of the computation is the
a total number of locationspolylog(n?/€), and such that if Joint state of whatever qubits remain unmeasured at the end
the noise inC’ satisfies the locality assumption and is of Of the computation.

strength at mosty, then the output distributiop” from C” Remarkably, this procedure can be used to simulate an
satisfies|p—-p”|,<e. arbitrary quantum circuit. Indeed, the cluster state of Fig. 1

was specifically chosen in order to simulate the circuit in Fig.
2. In Fig. 3 we illustrate visually how the cluster state of Fig.
1 can be used to simulate the circuit in Fig. 2. Each qubit in

In this section we describe how cluster-state quantun-‘he quantum circuit is _replaced by a horizon_tal -line of qublts
computation works. Section Il A gives a basic description ofin the cluster state. Different horizontal qubits in the cluster
the model, and introduces language useful in the later analyepresent the original qubit at different times, with the
sis of fault tolerance. Section Ill B describes how cluster-Progress of time being from left to right. Each single-qubit
state computation can be realized in optics. All proofs aredateHZ, in the quantum circuit is replaced by a single qubit
omitted, and the reader is referred instead h or to the N the cluster statecPHASE gates in the original circuit are
leisurely pedagogical account [83]. Note that our account Simulated using a vertical “bridge” connecting the appropri-
barely scratches the surface of the work that has been dorfée qubits. The cluster-state computation itself is carried out
on cluster-state computation: the interested reader shoufly performing a series of measurements in the time order and
also consulf7-9,34,35 for further work on the cluster-state Mmeasurement bases indicated in the caption to Fig. 3. The
model of quantum computation; further work on other final output of the cluster-state computatig# is related to

measurement-based models of qguantum computation may ¥ output of the quantum circuip) by [)=o]¢), whereas
found in[36-42. is a product of Pauli matrices that is an easy-to-compute

function of the measurement outcomes obtained during the
cluster-state computation.

Ill. CLUSTER-STATE QUANTUM COMPUTATION

A. Introduction to cluster-state quantum computation

The basic element of the cluster-state model is the cluster Output qubit
state, an entangled network of qulﬁt&n example of a clus-
ter state is represented in Fig. 1. Each circle represents a
single qubit in the cluster. We may define the cluster state as
being the result of the following two-part preparation proce-
dure: first, prepare each qubit in the state)=(|0)
+|1))/y2, and then applycPHASE gates between any two
qubits joined by a line. Since thePHASE gates commute FIG. 3. The cluster state of Fig. 1, marked to indicate how it is
with one another, it does not matter in what order they araised to simulate the different elements in the circuit of Fig. 2. Note
applied. Note that this is merely a convenient way of definthat the labeled qubits all have labels of the forft;” wheren is
ing the cluster state, and there is no requirement that it bé@ positive integer, and is a unitary operation. The labelindicates
prepared in this way. the time or_der; qubits With_the_ same label can bg measured in either

Given the cluster state, a cluster-state computation is sinfrder, or simultaneouslyJ indicates that the qubit is measured by

ply a procedure for measuring some subset of qubits in th@erforming the unitanyd and then measuring in the computational
basis. Equivalently, a single-qubit measurement in the basis

{UT|0y,UT|1)} is performed. Note that except for the first measure-
“*The states we call cluster states are in fact a generalization of thments, all measurements haveof the formHZ, ,; the = indicates
cluster state used ifl] These generalized states have been calledhat the value of the sign depends upon the outcomes of earlier
graph stateselsewhere; we prefer to use the more elegant ternmeasurements. The output from the computation is at the unlabeled
cluster state to refer to all the states in this class. qubits, which are not measured.

Simulates CPHASE Output qubit
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1) -- mapped to a single qubit in the corresponding quantum cir-

cuit, and that the columns of the cluster are connected with

-+ " the time ordering of the sequence of measurements. Qubits
—

] in the cluster are measured from left to right. This consider-
+ ably simplifies discussioigand the figures and the exten-

@)
e e @ . sions to more complicated topologies are in all cases obvi-
ous.

Up until now, we have described a cluster-state computa-

tion as being composed of two steps: preparation of the clus-
e @ @ . ter state, followed by an adaptive sequence of single-qubit
measurements. However, it is also possible to implement
cluster-state computations in alternative ways. The key ob-
(b) @ servation is that we can delay preparation of some parts of

o . . the cluster until later, doing some of the measurements first.
FIG. 4. Use of ancillas in cluster-state computations. Figaye  So, for example we could do a cluster-state computation via
shows an ancilla which is prepared then discarded. The cluster-stage following sequence of steps.
computation used to simulate this is shown(tj. Prepare columns one and two of the cluster, uginy

Although the example we have described involves a speper"’lr"’lt'Ons andPHASE gates.

cific quantum circuit, general quantum circuits can be given Perform the first column of measurements.
a cluster-state simulation along similar lines. Note that we Prepare cpl_umn threg:, usimng) preparations andPHASE
have not explicitly explained how the measurement feedford@tes to adjoin the third column of qubits to the second
ward procedure works, nor the precise function of measure<olumn.
ment outcomes that determines the Pauli correatiat the Perform the second column of measurements.
end of the computation. These are explained in detail in Keep alternating the steps of preparing an extra column
[1,33]; we also give an explicit description of the proceduresthen measuring an extra column, until the end of the
used in Sec. IV. computatlon: _ _

One feature of our example quantum circuit, Fig. 2, that We call this aone-buffered implementati@f cluster state

deserves attention is the fact that it does not involve anfomputation, since there is always a buffer of one column
ancilla qubits. An important feature of many quantum cir- °€tween the column of qubits being measured, and the most
cuits is that they involve the preparation and discarding of€cently prepared column of qubits. We call the set of qubits

ancillas during the computation. This is especially true ofabout to be measured treairrent colump and the column
circuits for quantum error-correction and fault-tolerant quan-after that thenext column _ _
tum computation, where the ancillas are used as a heat sink For fault tolerance the one-buffered implementation of
to remove excess entropy from the computer. Such ancill§luster-state computation has a great advantage over our
preparations and removal are easily simulated in the clusteR"ginal prescription in which the entire cluster is prepared
state model. Figure(d) illustrates a simple quantum circuit first. The reason, as |nd|catec_i in the Introductlo_n, is that if
involving an ancilla that is prepared and later discarded. Figthe entire cluster is prepared first, then qubits which are to be
ure 4b) illustrates how this preparation and discarding canméasured later in the computation will have undergone sub-
be simulated within the cluster-state model. stantial degradation by the time they are measured, and this
The cluster states we have described so far have all bedMll unacceptably corrupt the output of the computgt?on.
embedded in two dimensions. This is for convenience only, More generally, the one-buffered implementation illus-
In practice, a more complicated topology for the cluster mayirates the important point that a given cluster-state computa-
be useful in some circumstances. This may be achieved efion may have many differenplementationsi.e., different
ther by embedding the cluster in a higher number of dimen_methods f(_Jr creating the cluster and perfor.mlng the required
sions, or by nonlocal connections between different parts ofingle-qubit measurements. When proving fault-tolerant
the cluster. Fault-tolerant quantum circuits often involve twothréshold theorems for cluster-state computation we will
(or more spatial dimensions, corresponding to a three-n€ed to carefully speC|fy_the detall_s of _the |mplementa_t|on
dimensional cluster-state computation. Note, however, that #S€d- All the implementations used in this paper are variants
doesnot follow that we require the use of all three spatial ©N the one-buffered implementation.
dimensions to do a cluster-state simulation of a two-
dimensional quantum circuit. We will see below that it is B. Optical cluster-state quantum computing
only necessary to prepare a small part of the cluster at any

iven time, and this means that the cluster-state computation Our description of cluster-state computation has been as
9 ’ . L o PUtatioly, abstract model of guantum computation. As described in
may be performed without requiring additional spatial di-

mensions beyond those used in the circuit being simulate _the Introduction the cluster-state model also shows great

Despite the different possible topologies of the Clusterpromise as the basis for experimental implementations of
state, we shall restrict out attention to cluster states arranged
on a regular grid in two dimensions. Furthermore, we shall *We thank Andrew Childs and Debbie Leung for pointing this fact
always arrange things so that each row of the cluster can baut.
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guantum computation in opti¢40]. We now briefly describe sis. Thus, if one attempts to add qubits to a cluster using a
the optical implementation of cluster-state computation, fol-CZ,. )2 gate, failure of the gate merely results in a single
lowing [10], and some of the special challenges it poses for upit being removed from the cluster, rather than the entire
proof of fault tolerance. cluster being destroyed10] shows that by combining this
The proposal of10] is a modified version of the proposal ppservation with a random walk technique, it is possible to
of Knill, Laflamme, and Milburn(KLM) [16], and we now  efficiently build up an arbitrary cluster state using either
briefly review some of the basic elements of KLM, following CZy Or CZy,, gates. Once this is done, all the other opera-

the review in[10]. KLM encodes a single qubit in two opti- tions in the cluster-state model can be done following KLM's
cal modesA andB, with logical qubit stateg0), =|0Das,  prescription.

and |1), =|10)g. (Note that we are using the standard
bosonic occupation number representation on the right-hand
side of these definitions, not the qubit notation, so that, forV-
example,|01),g indicates zero photons in mode and one

photon in modeB.) State preparation is done using single- |5 this section we prove a threshold theorem for noisy
photon sources, while measurements in the computation@iyster-state quantum computation. This theorem is appli-
basis may be achieved using high-efficiency photodetectorgapie to situations in which the cluster can be extended dur-
Such sources and dgtectors make heavy demands not er!tirql,\g the computation usingPHASE gates that are noisy, but
met by existing optical technology, although encouragingoperate deterministically. In the next section we extend the
progress on both fronts has been reported recently. Arbitrarhegrem to some situations where theHASE gates operate
single-qubit operations are achieved using phase shifters anghndeterministically, as is the case for optical cluster-state
beamsplitters. computation.

The main difficulty in KLM is achieving near- Rather than attempt to invent fault-tolerant methods for
deterministic entangling interactions between qubits. KLMc|yster-state computation from scratch, it is natural to build
use the idea of gate teleportatigf,6] to produce a gate off the existing and rather extensive body of literature on
CZyyn+12 Which with probability n®/(n+1)* applies @ fayit-tolerant quantum circuits. As described in the Introduc-
CPHASEgate to two input qubits, wheneis any fixed posi- tion, our strategy is to consider a cluster-state computation
tive integer. When the gate fails, the effect is to perform athat simulates a fault-tolerant quantum circuit, and then ask
measurement of those qubits in the computational basis. Inf the simulated fault-tolerant capabilities are able to correct
creasing values af correspond to increasingly complicated noise in the cluster-state implementation.
teleportation circuits. For this reason, KLM combine these e therefore begin with a quantum circ@tand, instead
ideas with ideas from quantum error correction in order toof directly translating it into the cluster-state model, first en-
achieve a near-deterministiPHASEgate, and thus complete code@ as a fault-tolerant circuif, in the canonical form of
the set required for universal quantum computation. theorem 4. Recall that a canonical fault-tolerant circuit uses

An important property of the ga€Zz,+1)2 is thatin the  only preparations of qubits in the state), single-qubit gates
ideal case of perfect implementatiome know when the gate of the form HZ,, and the two-qubit gatéH ® H) CPHASE
succeedsin particular, in KLM's implementation procedure, Using the prescription described in Sec. Il it is a simple
success of the gate is indicated by certain photodetectorsatter to translaté, into a cluster-state computation, which
going “click,” while failure is indicated by different photo- we denoteC.

FAULT TOLERANCE WITH DETERMINISTIC
CPHASE GATES

detection outcomes. We call such gapestselectedates to Suppose now that’ is a noisy one-buffered implementa-
indicate that whether the gate has succeeded is known, anién of C. IsC’ equivalent to some noisy implementati®i,’
can be fed forward to later parts of the computation. of Fo? We will show in this section that this is indeed the

The advantage of the optical cluster-state proposgl@f case, and moreover that the noise is of a type and strength
is that it only makes use of théZ,,, andCZ,,o gates, both of  that is correctable by the fault-tolerance built Q. The
which use relatively simple configurations of optical ele-noisy cluster-state computatich is therefore a fault-tolerant
ments, and avoids the use of error correction in achieving 8imulation of the original quantum circu®. It is worth
near-deterministicPHASEgate. This results in a greatly sim- noting that this noise correspondence holdsaioy quantum
plified proposal for quantum computation. circuit and its corresponding one-buffered implementation;

A key observation used in the optical cluster-state prowe do not use any special properties®f in proving the
posal is an interesting general property of cluster states. Supoise correspondence.
pose we measure one of the cluster qubits in the computa- A key construction used in establishing this noise corre-
tional basis, with outcomen. Then it can be shown that the spondence is what we call titieral quantum circuit£. The
posterior state is just a cluster state with that node deleted, ujteral circuit is a quantum circuit depiction of the operations
to a localZ™ operation applied to each qubit neighboring theperformed during a one-buffered implementation of a
deleted qubit. These are known local unitaries, whose effeatluster-state computation. It is a literal translation of the one-
may be compensated in subsequent operations, so we mhyffered implementation, and should not be confused with
effectively regard such a computational basis measuremettite quantum circuit7, being simulated. As an example,
as simply removing the qubit from the cluster. consider the single-qubit quantum circuit depicted in Fig.

This is a useful observation because when@agz,.12  5(a). The corresponding cluster-state computation is depicted
gate fails, it effects a measurement in the computational ban Fig. 5b), and the literal circuit showing the one-buffered
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FIG. 6. A circuit with the same output as that of Figck The
=" new two-qubit gates that have been insertedsaver gates.
(b)

tation the only qubits available in the cluster at any given
time are the qubits in the current column, and the next col-

. umn. The computation is performed by repeatedly perform-

[+) HZQI—D= my ing the following two steps{1) making all the necessary
measurements on the current column; &2dusing CPHASE

[+) HZ:l:az'_D= ma gates to add an extra column of qubits into the cluster. The

only variation in this procedure comes at the very beginning
(c) [+) - of the computation, where_: we need to create two whole col-
umns of cluster-state qubits, and at the end, where we do not

FIG. 5. The starting point for mapping noise in the quantumn€ed to add an extra column into the cluster.

circuit model to corresponding noise in the cluster state model. We AS in the fault-tolerance results for quantum circuits, our

begin with a simple quantum circuit in the canonical form of Sec.results do not allow for completely arbitrary types of noise.
Il B, and translate this circuit into a cluster-state computation. Thenstead, we make some physically plausible assumptions
explicit implementation of the cluster-state computation is de-about the nature of noise in the one-buffered implementation.

scribed by the literal circuit. The noise model we adopt allows for the following types of
noise.

implementation is shown in Fig.(§. Note that although 3 (1) Noise in unitary dynamics\Vle model this in a manner

qubits appear in the literal circuit, the quantum circuit beingSimilar to the noise model for quantum circuits described in

simulated is a single-qubit computation. Sec. Il B. Each qubit has its own environment, and we as-

The literal circuit £ offers a convenient means for de- sume that noninteracting qubits have noninteracting environ-
scribing the effects of noise id’, and for this reason we Ments, but make no other assumptions about the noise. In-

have gone to some trouble in Figicbto depict the correct deed, we can use an even more general noise model, in
time-ordering of events. We have, for example, offset thevhich qubits at the same row in the cluster state are assumed
preparation of the findh-) state, since it is not actually pre- to share a common environment, and all we assume is that
pared until later in the one-buffered implementation, andnoninteracting rows have noninteracting environments.
preparation at an earlier time would result in considerably (2) Noise in quantum memarQuantum memory is sim-
more noise affecting the qubit. ply the (unitary) identity operation, and we model a noisy

The noise inC’ is quantified by the error strength, ¢ of ~ guantum memory step as we would any other noisy unitary
the operations appearing in the literal circuit. The key resul@Peration. Note that this type of noise affects all qubits other
of this section is that if the worst-case noise strengtfi’iis ~ than the current column during a round of measurements.

7, then the corresponding noise in the quantum cirgyjt (3) Noise in preparation of th¢+) state We model this
satisfies the locality assumption and has strength at mgst as perfect preparation ¢f-), followed by a noisy quantum
for some constant. Providedcy< 7, we conclude that the memory step. _ _ .
distribution p’ that results when we measure the output of (4) Noise in measurements in the computational basis
the cluster-state computation satisfigs-p’|l;<e, wherep ~ We model this as a noisy quantum memory step, followed by
is the distribution output from the noise-free computation. & perfect measurement in the computational basis.

The section contains three parts. Section IV A introduced/Ve quantify the overall strength of noise in a one-buffered
our noise model for cluster-state computation. Section IV Beluster-state computation by the worst-case error strength in
proves the noise correspondence described above for tf@y Of the unitary operations, including the noisy quantum
simplest case when the quantum circi and the corre- Memory steps in preparation and measurement.
sponding cluster-state computatiGmre single-qubit compu-
tations. All the ideas introduced in this subsection are then B, Noise correspondence for single-qubit computations

extended to the case of a multiqulfi, andC in Sec. IV C. : . _ . .
In this section we consider the simplest case of a single-

qubit circuit 7o made up of gateie-lzaj, as shown in Fig.

5(a). A cluster-state computatiofi simulating g is shown

in Fig. 5(b). The establishment of the noise correspondence
The noise model appropriate to a cluster-state computds a five-step process. To help orient the reader, we now

tion depends critically upon the implementation procedureoutline these steps. Note that the meaning of these steps may

used to perform the computation. The results in this sectiomot be completely clear upon a first read, but hopefully will

are based on the one-buffered implementation procedure, @ase comprehension of later parts of the paper.

described in Sec. Ill. Recall that in a one-buffered implemen- (1) We begin with the literal circuitZ depicting a one-

A. Noise model for a one-buffered cluster-state
computation
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FIG. 9. A definition to make other circuits more compact.

FIG. 7. A circuit with the same output as Fig. 6, but with the
classical controls explicitly drawn in. Note thatis the top bit,
while zis the lower bit. The new circuit notation involving tlhia1
andHZ,, operations indicates how the classical variabig used to
control the measurement basis. A valuexef0 means thaHZ,, is
applied, while a value af=1 means thatiZ_, is applied. Note that
in the case of—IZal, we always have=0, and stZ,, is applied, as
expected.

ever, are real operations and will be subject to noise. When
we need to emphasize that a circuit contains a mix of both
real and perfect operations we will refer to it asianperfect
circuit, as distinct from anoisy circuit where all operations
are subject to noise.

There are two classical aspects of the cluster-state com-
putation that we have not yet explicitly included in the literal
buffered implementation af. Such a circuit is shown in Fig. circuit. These are the Pauli. corrections introduced by the
5(c). measurement, and the classical fee_:dforward of measurement

(2) The literal circuit of Fig. %c) does not explicitly con- rgsults to a_ccount for these C(_)rre(_:tlons. A_s an example, con-
tain the classical feedforward and control that is performedider the first measurement in Figich This introduces a
during the cluster-state computation. Without taking thesé&orrectionX™ to the state of the qubit immediately below
into account, it is not possible to understand the effects oft"d consequently the second measurement is performed in
noise on the computation. Thus, we expafdo explicity ~ the basisiZ,,, according to whethem, is 0 or 1. In general,
include the classical feedforward and control. the Pauli correction is given b¥*Z* wherex andz are clas-

(3) We use a series of circuit identities to transform thesical variables. Initiallyx andz are both zero, and they are
literal circuit £ into an equivalent circuit that contains Updated after each measurement by the rule
“block” operationsB,, , each of which corresponds directly to
the action of some' gatelZ,, in Fo. Looking ahead, the X' =z+m(mod 2, (21
block form equivalent to a E)erfectly implementédis de-
picted in Fig. 14, with theBaj shown in Fig. 15.

(4) The threshold theorem of Terhal and Burkard in-

volves only unitary operations. Thus, the next step is to reynere m=0,1 is the measurement outcome. Subsequent
place the classical elements of the blod&ks with unitary  easurement is performed in the basiZ,,, with the
quan.tum equivalents to obtain a un|t'ary operat@Baj. choice determined by whetharis 0 or 1.
Looking ahead, the correspondence with He, of 7 is The two classical variablesandz have been introduced
explicitly shown in proposition 5. The circuit equivalent to into the circuit in Fig. 7. The error update operation EU
the literal circuit but containing unitary blocks is shown in updatesx and z using Egs.(21) and(22), and the variablex
Fig. 19, with theQB,, defined in Fig. 17. is used to control the rotatiort$Z, , . An explicit definition
(5 It can now be shown that noise @his equivalent to  of EU is shown in Fig. 8. The circuit of Fig. 7 can be made
noise within the unitary block®B, . Using proposition 5 more compact by introducing the notation of Fig. 9 for the
and the first unitary extension theorem, theorem 1, we showlassical feedforward. The resulting circuit is shown in Fig.
that noise of strengthy in QB,. corresponds to noise of 10.
strength at most» in HZ,,, for some appropriate constamt We have made several modifications to the literal circuit
Our first task in this subsection, then, is to explicitly insert £, but the output of the imperfect circuit shown in Fig. 10 is
the classical control and feedforward operations into the litstill equivalent to the output of the noisy literal circuit in Fig.
eral circuit£ of Fig. 5(c), and to arrange that circuit into an 5(C). To complete the construction of the blodRg referred
appropriate block form. We begin by inserting perfeatap  to earlier in step(3), we introduce some additional circuit
gates into£ to obtain a more compagbut equivalent cir- identities whose effect is to compensate for the corrections
cuit which is shown in Fig. 6. We may assume that theseX*Z% This will enable us to make exact the correspondence
SWAP gates operate perfectly as they are merely a mathematwith the gateS—IZaj in the quantum circuitFy.
cal convenience. The remaining operations in Fig. 6, how-

m —] m==| Uso, Uta,

_ H—] 4D=r# m— A
r=BUl—y = ¢ b— 1/ 0 | EU | EUL .,
, o . o o | .

L |

Z =x (mod 2, (22

FIG. 8. The classical error update circuit, following E¢21) FIG. 10. The output of Fig.(8) is the same as the output of this
and(22). imperfect circuit.
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* & — ¢—
z
z
£Z - FIG. 13. We insert these perfect gates between each pair of
blocks in Fig. 10.

4 . This completes the construction of the repeating blocks
FIG. 11. The output of Fig. 10 is unchanged if these perfectB“'. The circuit shown n Fig. 14 aII.ows us a f'C“O!" of 'd?”'
gates are prepended at the beginning of the computation. tlfylng the tOPmO_s‘ qubiQ as a persistent dat_a qubit car.rylng
the information in a cluster-state computation. We will see
First, at the beginning of the first block in Fig. 10, we thatB, effectively performs single-qubit gates @nh To see
prepend the gates illustrated in Fig. 11. These are perfet¢tow eachB, corresponds to a gate in the quantum circtit
gates, and can be prepended without changing the output ebnsider the circuit identity shown in Fig. 16. This identity
Fig. 10, since the initial values of andz are both zero. shows that gerfectimplementation oB,, is equivalent(up
Second, we modify the very final block in Fig. 1@hich  to a known global phase facioto the effect of applying a
is not explicitly shown, appending operations inverse to perfect HZ, gate to the first qubit, initially in the state).
those in Fig. 11, as illustrated in Fig. 12. The reason we maynyitively, then, we would expect that the result of the actual
do this is as follows. If all the operations in the ClUSter'StatQmperfections inB,, would be to effect an imperfediz
computation are implemented perfectly, then at the end of thﬁate. That is, wea obtain a way of translating our goisy

, . ! -
computation the qubit would be in the stat&z"y), where ) \cior state computation into an equivalent noisy quantum
| is the output from the corresponding perfect quantum. it computation
circuit computation. If we then measure this state in the com- We have introduced the identity of Fig. 16 for motiva-
putational basis, we can compensate for the error operatQr

X*Z% by appropriate postprocessing of the measurement r ional purposes only; we omit a proof, as we prove a stronger

sult, i.e., by adding to the outcome of the measurement result later. Interested readers may wish to confirm this iden-

modulo two. This process of compensating the measuremeffy by hand. What we do now is find a way 9 showing
results is, however, equivalent to appending the perfect gatdi/antitatively that noise in the imperfect operatip may

illustrated in Fig. 12, and dropping the process of compenP& mapped to noise in the quantum circi.
sation. The next step in our proof, ste@), is to replace the

Our third and final modification is to insert the perfect classical elements i, with unitary quantum equivalents to
gates of Fig. 13 between each pair of the repeating blocks iPtain fully unitary blocks, which we deno@B,,. The rea-
Fig. 10. Another way of stating this is that we insert theson for doing so will become clear in the final step of the
circuit of Fig. 12 at theend of every block in the computa- proof, where we use the first unitary extension theorem,
tion, except the last block, where it has already been insertedheorem 1, to compare an imperfé@B,, to a noisyHZ,.
and insert the circuit of Fig. 11 at theeginningof every The classical elements a‘aj are the classical variab'ezs
block in the computation, except the first, where it has al-z the error update operation EU; and the classical controlled
ready been inserted. This insertion does not modify the outd, ,. These have all been replaced by quantum equivalents to
put of the circuit, since, as is apparent from Fig. 13, theselefineQB, in Fig. 17. The quantum error update operation
gates cancel one another out. QEU is defined in Fig. 18, and,, is defined as before but
With these modifications, we see that the output of thewith a quantum control. The bits carryingandz have been
noisy cluster-state computation in Figchis equivalent to  replaced by qubits which we lab& and Z. We therefore
the output of the imperfect circuit illustrated in Fig. 14, assume that operations performed on these qubits are noise-
where the operatioB,, is defined in Fig. 15. less, including the operations in QEU.
The output of the noisy literal circuif is thus equivalent

D
Y * to the output from the imperfect circuit in block unitary form
shown in Fig. 19. The qubit labeleq is persistent, and we
can see that the cluster-state computation can be thought of
l+H— —--
T - M5 H H— B, [T
Z s — —
FIG. 12. The effective output of Fig. 10 is unchanged if these FIG. 14. The output of this imperfect circuit is the same as the
perfect gates are appended at the end of the computation. output of the noisy cluster-state computation in Fifc)5
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Use - Uta
— 8 [ = —| . | — B [— - -
— L | Ul | | l QEU
FIG. 15. The definition of the operatid), used as the basis for FIG. 17. The definition of the operatio@B,.

the repeating blocks in Fig. 14.

) o ) ) refer to the imperfect operation, while in the text we some-
as the successive application of unitai@8,, . These unitar-  times useQB,, to refer to the imperfect operation, provided

ies require three ancilla to perform an operatiorQrbut the  the context is clear. It follows that there exists a unitary
following proposition shows that, when all operations aregperationUg on E such that

done perfectly, the effect of ead®dB, on Q is identical to ,
that of HZ,, . ‘ IQB;, - QB,, @ Ug| < c. (24)

L . . . .
Propos[tlon 5 The circuit identity of Fig. 20 h'olds, where (Note thatUg may depend of, but that dependence is not
both circuits are assumed to be perfect. All inputs are Simportant in the argument that follows, and so is sup-
sumed to be arbitrary, except the fixeg) input, as shown. pressed.

The proof of the circuit identity of Fig. 20 is straightfor- : ro - :

ward, but somewhat technical. The details are sketched in So, IfQB“'.IS the noisy |mplementa.t|0n'deaj, can we

Appendix B. ShOV\’l) that_thls corresponds to a noisy |mplem_en_tat|on of
The final step in establishing the noise correspondence fo Z“j' In F_'g‘ 19 we see thqt the quitdt; is always |n|t|§lly

single-qubit computation is to use proposition 5 and the ﬁrsprepared in the st_atbk). This is anexactstatement, since

unitary extension theorem, theorem 1, to argue that an imiMPerfect preparation of the state) is modeled as a perfect

perfect implementation o®B, is equivalent to a noisy op- preparation, followed by a noisy quantum memory step that

erationHZ, . Following the noise model of Sec. IV A, |& is absorbed into the |mperfect o_perat@B_aj. Define§; to
be the environment responsible for the noisy operations ir?edthi SUbipace Q@M;XZE in Vt\;h'c.h M, is wg_the staté+),Th
the imperfect implementation QBaj.We denote this imper- an- the other systems may e’ n an. arbitrary state.. en
fect operation byQB,,, a unitary acting orQM;XZE By defineU; =QB,, ® Ug andV;=QB, . DeﬂnetJj as shown in
assuming that the same environménts reused by all the Fig. 21. By proposition 5 we see thalt)j|s = Uj|s and so we
imperfect operation®B] we make the most pessimistic as- can apply the first unitary extension theorem, theorem 1, to
sumption we can possibly make about noise in the clustereonclude that there exists a unitary extensﬂ;nof VJ-|S
state computation. In the more general multiqubit situationsych that :

this assumption will correspond to assuming that all the qu-

bits in the same row of the cluster share the same environ- IV, - Ujl= v, - ujl (25
ment.

Now, supposey is the maximal error strength in any of :||QB;J_ -QB, ® Uell (26)
the noisy operations making up the imperfé, . That is,
7 quantifies the strength of the noise in the cluster-state com- <c7. (27

putation. Letc be the number of noisy operations in the i »
imperfectQB, . Then the chaining property, proposition 1, Applying proposition 2 we see that

implies that AQ:MjXZE(HZaj,Vj) <cz. (28)

AQMJ.xz;E(QBaJ.,QB;J.) <cy, (23 Next, defineM=M;®M,®... to be the combination of

) ) all the systemsv;. Applying proposition 3 and E¢28) we
whereQB,, is the perfect Qﬁj operation. Note our conven- gag that

tion that in algebraic expressions we always @B;j to

Age(HZ, V) <cn, (29
v = W
[+— Ba, =m _m —
T = —_ z EU —QEU [— =
Z = ad 2z |

FIG. 16. The output of the circuit on the left is identical to the
output of the circuit on the right. For this identity we assume thatall  FIG. 18. The definition of the quantum error update operation,
operations in both circuits are done perfectly—there is no noise. QEU.
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e =
QB QB., S I — |
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0z — —-- — U — = —|gry—

FIG. 19. The output a® in this imperfect circuit is identical to
the output of the imperfect circuit of Fig. 14, and thus is equivalent E—- R
to the output of the noisy cluster-state computation of Fig).5

) ] ) ) ) FIG. 21. The definition of the operatidﬁj. The environmenE
whereE’=MXYEis theeffective environmerfor the qubit  js shown at the bottom, where the wire with a slash through it

Q, and we have extendéﬁ] to act in the natural way oR’, indicates an arbitrary quantum system.
i.e., V; acts trivially on system#/, such thak +# j. Because

\~/j|sj: V,-|§ we see that the noisy impIementatiW:QB;j The noise correspondence is established via the same pro-

cess followed in Sec. IV B. We begin with a multiqubit quan-
of QB,, is exactly equivalent to a noisy implementatiddnof  tum circuit like the circuitF, shown in Fig. 23. The cluster-
HZ, of strength at most». state computatiol simulating this circuit is shown in Fig.

o conclude, we have shown that if the one-buffered24. As before, we construct a literal circuit and rearrange it
cluster-state computation depicted in Figic)5is imple-  into the block form where each block is identifiable with a
mented with noise of strength at mostin each operation, gate in the quantum circuif,. We have omitted the details
then the output of that computation is equivalent to the outof this rearrangement, and presented the final block form
put of the noisy quantum circuit in Fig. 22, where each op-equivalent to the literal circuit in Fig. 25. The blockB, ,
eration is performed with noise of strength at mogtAs we QBB correspond to the single-qubit gaﬂdza, HZB in Fo,
have described it is the number of noisy operations in the as in the previous subsection, and the effects of noise in these
imperfect operatiolQB,, i.e.,c~10" In actual implementa- blocks has already been considered. The new element is the
tions it would be pOSSIb|e to directly evaluate the totalunitary blockQC, which is shown in detail in Fig. 26. The
strength of the noise in the imperfect operat@B,, result-  following proposition shows that a perfect implementation of
ing in a more accurateand better, from the point of view of QC effects the operatioiiH ® H)CPHASE on the qubitsQ,
the thresholgvalue forc. andQ,. (see also Fig. 27.

A interesting feature of our argument is that even if the  Proposition 6 The circuit identity of Fig. 28 holds, where
various physical operations involve only Markovian noise,hoth circuits are assumed to be perfect.
the corresponding effective noise in the implementation of Proof. The proof of this identity uses the same techniques
HZ, is inherently non-Markovian. The reason is that theas the proof of proposition 5, and is omitted. The identity
qubitsX andZ associated with the classical variableandz ~ may easily be verified using any of the standard computer
are part of the effective environment @f at every stage of algebra packages. O
the computation, due to the necessity of feeding forward the This proposition plays a similar role to that played by
measurement results. This is the reason we need to use theoposition 5 in establishing the single-qubit noise corre-
non-Markovian threshold result of Terhal and Burkf2d)]. spondence. In this case the noise correspondence will again
follow from the first unitary extension theorem.

Following the noise model of Sec. IV A, we introduce
environmentsE; andE, associated with the respective rows

In this subsection we extend the ideas of the previousn the cluster-state computation of Fig. 24. Under the locality
subsection, explaining how noise in a multiqubit one-assumption an imperfe@Ba, for example, is thus repre-
buffered cluster-state quantum computation may be mappesknted as a unitary operatQ)B acting onQ;MX,Z,E;,
to equivalent noise in the corresponding quantum circuityhich results in an effective environment for the correspond-
The ideas used to do this are the same as were used in tn1 HZ’ of E1— X.Z.E1. As in the single-qubit case, the
proof for single-qubit cluster-state computations. As a result,
we merely sketch out how the proof goes for a specific eXn0|se strength in the operations of the foHZ, is at most

¢y, wherec=10" is a small constant, ang is the noise

ample, with the general proof following similar lines.
strength in the operations used to implement the cluster-state

C. Noise correspondence for multiqubit computations

computation.
] — HZ, An imperfect QC is similarly represented as a unitary
QC’ which involves both the environmentsg; and E,.
[+)— — [+ — — Usi ) . )
QB, = sing the first unitary extension theorem we can show
— - QEU | that this results in an effective environmenk,,

[+)——H Za, H Z o, [— = -

FIG. 20. The circuit identity of proposition 5. This ispeerfect
circuit identity, i.e., all elements in both circuits are assumed to be FIG. 22. This noisy circuit is equivalent to the noisy one-
performed without any noise. buffered cluster-state computation of Figch
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) —{fZa) e .
[+ a1, — H )] |+ 2 -

|[+) —HZgs, H —HZ, QB,, QB,,
7 0x— R
FIG. 23. An illustrative two-qubit quantum circuif, using 10}z, — -
canonical fault-tolerant gates. +) 0. Qo n
1+ p— H e H e H
=M3X,Z;MX,Z,E E, for the operation(H ® H)CPHASE in 0 |98 @Bs|

Fo. It follows that the noise strength in thél ® H)CPHASE |o)xz

Zz — -

gate is at most’», wherec’ is the total number of noisy
operations in the imperfect operatidpC, and again is of

order 10. utput of the noisy two-qubit cluster-state computation in Fig. 24.

) Summlng'up, suppose we perform a ”P'Sy On_e'bl,mere@he operation)B, ,QB; are as defined in the previous subsec-
implementation of a cluster-state computation, satisfying thgiy, \yhile QCis défined in Fig. 26.

noise model described in Sec. IV A, and wigithe maximal
noise strength in any operation. Then we can show that this Prepend | '
noisy computation is equivalent to performing the corre- '
sponding quantum circuit with noise satisfying the locality 1 . "
assumption, and of strength at masty, wherec’~ 10" is 4 F :
some constant. This completes the proof that quantum cir- 4 r T i
cuits may be simulated in a fault-tolerant fashion using a oo | ; 1 ET QBEU') i

FIG. 25. The output of this imperfect circuit is equivalent to the

Append

(7]
=]

one-buffered cluster-state computation. 4 L
One remarkable feature of our proof is that it goes
through unchanged even if we allow noise to occur in the
classical computations and feedforward. It is easy to see that
such noise simply causes an additional contribution to the o _ _ _
strength of the noise in the corresponding quantum circuit, F!G- 26. The definition of the imperfect operatiQC appearing
and thus a decrease in the effective threshold. This feature 8t Fi9- 25. We have prepended and appended the same fictitious
the proof also carries over to the threshold theorem for opti€!€ments used in the single-qubit case in Figs. 11 and 12. The gate
cal cluster-state computation presented in the next sectiofeE" 'S the two-qubit extension of the error update, and is shown
Thus, our results show that not only can cluster-state com’ detail in Fig. 27. The only noisy operations are t.he Had_amard
putation be made resilient against the effects of unitary nongates, and thePHASE gate between the first and the fifth qubits.
Markovian errors, it can even be made resilient against the

effects of noise in the classical parts of the computation.

V. FAULT TOLERANCE WITH OPTICAL ] EU’ [ n
CLUSTER STATES 9B

In this section we explain how the ideas of Sec. IV can be
extended to enable fault-tolerant simulation of quantum cir- — — &
cuits usingoptical cluster states. The main challenge in prov- & L
ing this result is the non-deterministic nature of the entan-
gling gates used in optical cluster-state computation. We [, 27. The definition of the two-qubit quantum error update
show that this challenge can be met by using those nondesperation analogous to that of Fig. 18.
terministic gates to add additional pieces to the cluster in a
near-deterministic fashion using what we call th@ngling _ - —{7]

nodeimplementation of optical cluster-state quantum com-

putation. On those rare occasions when the addition to the ) — B +) B

cluster fails, one simply accepts failure and moves on, re- ] — —

garding the failure as a small amount of additional noise in a — - |

deterministic preparation of the cluster state. This allows us Jece | = L lesv|
) — — [+)—— —

FIG. 28. The circuit identity of proposition 6. This isperfect
circuit identity, i.e., all elements in both circuits are assumed to be
FIG. 24. A noisy two-qubit cluster-state computation. performed without any noise.
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Base node which explains how noise in the dangling node implementa-
~ea :_\_\, k dangling nodes tion may mapped to equivalent noise in the quantum circuit
el model.

FIG. 29. The microcluster used in the dangling node implemen- A. Overview
tation of cluster-state computation. There &rdangling nodes, in The broad structure of the threshold proof for optics is
general; in this examplé=3. similar to the proof for the deterministic one-buffered imple-

mentation discussed in Sec. IV. We take a quantum circuit
to apply the results of the Sec. IV to deduce a fault-toleranthat we wish to simulate, and turn it into a fault-tolerant
threshold for optical cluster states. guantum circuit, using the standard prescriptions for fault
Although we phrase our results in terms of optics, theretolerance. We then convert the fault-tolerant circuit into an
may be other natural contexts in which our results apply. Thequivalent cluster-state computation, and then specify in de-
crucial fact about the optical implementation that we use idail a specific implementation protocol for performing that
the existence of a postselected nondetermingstigsASEgate  computation. In this case that will be a dangling node imple-
which, when it fails, effects a measurement in the computamentation. We now describe how the dangling node imple-
tional basis. The threshold results we apply would applymentation works. We will show in later subsections that
equally well to other implementations which share this fea-noise in the dangling node implementation can be mapped
ture. onto equivalent noise in the original fault-tolerant quantum
We begin our account in Sec. V A with an overview of the circuit. This enables us to deduce that the output of the noisy
main elements of the proof. In particular, we explain theoptical cluster-state computation is equivalent to the output
dangling node implementation in detail, and explain heuris-of a noisy fault-tolerant quantum circuit computation, and
tically how noise in the dangling node implementation mapshus to obtain a threshold result.
to noise in the quantum circuit model. Section V B discusses We begin by describing the dangling node implementation
the noise model we use in our description of optical clusterfor the simplest case of a single-qubit cluster-state computa-
state computation. Section V C proves a rigorous thresholtion. The basic idea is to to build the cluster up using small
for what we call thewo-at-a-timeimplementation of cluster- cluster states that we cathicrocluster$’ The basic micro-
state computation. The two-at-a-time implementation makesluster is illustrated in Fig. 29. It includes a singlase node
use of deterministicPHASE gates, and thus is not of imme- on the left, andk dangling nodeson the right, where is
diate relevance for optical cluster-state computing. Its intersome fixed constant.
est arises from the fact that it is intermediate in complexity Optically, we may prepare microclusters by sequentially
between the one-buffered implementation studied in Sec. I\performingk nondeterministiccPHASE gates. These may be
and the full dangling node implementation of optical cluster-either the nondeterministic KLMPHASE gate, or one of its
state computation. Analyzing the two-at-a-time implementaimore efficient(but still nondeterministic modern descen-
tion thus provides a useful stepping stone on the way talants. Since is a constant, the expected number of opera-
understanding fault-tolerance in the dangling node impletions required to form a microcluster is also constant. In
mentation. Section V D introduces some useful nomenclapractice, there are likely to be much more efficient means of
ture for describing postselected quantum gates, and provespaeparing a microcluster than this procedure. However, for
simple lemma about such gates. The threshold proof fothe purposes of this paper we shall not be concerned with
optical cluster-state computation is completed in Sec. V Epptimizing the formation of the microcluster.
The dangling node implementation of a single-qubit
cluster-state quantum computation works as follows. The
first step is to prepare a single microcluster, as illustrated in

O N (\/C.é Fig. 29. This forms the basis from which a larger cluster state
-/ \J\O

will gradually be grown by adjoining extra microclusters.
The second step of the dangling node implementation is

to attempt to adjoin microclusters to each of the fkstl

dangling nodes of the first microclustére., all but the last

of the dangling nodgsusing nondeterministicPHASEgates.

If one of these attempts to adjoin should succeed, then we

O_O stop, and use computational basis measurements and single-
qubit operations to ensure that we end up with the larger
cluster state shown in Fig. 8. To ensure that this works, it

(b) is critical that we use one of the special KLM nondetermin-

istic CPHASE gates, which, as noted in Sec. lll, have the

property that failure of the gate results in a computational

(@)

FIG. 30. Figure 3() shows the cluster state which results after
successfully adjoining a microcluster to the initial microcluster in
Fig. 29, deleting the extra nodes, and applying appropriate local
operations. Figure 3B) shows the cluster which results after 1 ®A similar microcluster construction was used for different pur-
failed joining attempts. poses in10]
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0055

) o . FIG. 33. An example cluster-state computation. We have omit-

FIG. 31. The simpler two-qubit microcluster adjoined to the te4 explicit description of the measurements performed, since it is

cluster state at the vendof a single-qubit cluster-state computa- the formation of the cluster that we wish to concentrate on, rather
tion, in place of the microcluster in Fig. 29. than the details of the measurements.

basis measurement, and removal of a qubit from the cluster, . : . - K
If all k1 attempts to adjoin fail, then we simply accept thecalculatlon shows that this occurs with probability 1p¥72

2k-2 H H
failure, and apply the appropriate single-qubit operation to Pr which approaches 1 rapidly sbecomes large. If,

e wih e rger cluster state shown n Figigonote 11 2161 19, eher aslonment hou ), we Sl
that if the nondeterministic KLMcPHASE gate fails with ' 9 9

o " ... being prepared. Note that if one part of the microcluster is
propablllty Py, then Fhe probabll'lty of sgfcessfully adjoining successfully adjoined, but the other part fails, then it may be
a microcluster, as in Fig. 38), is 1—p; -, while the prob-

ability of failing, as in Fig. 300), is p‘f“l. When the adjoin- necessary to delete some nodes of the clus_ter using compu-
; tational basis measurements and la€alperations in order
ment succeeds, we effectively add two perfect extra columnF btain the cl f Fig. 36
of qubits to the cluster. Failure introduces a defect into the® 2 tain the cluster of Fig. 3 ). . .
cluster, but we can ens;ure this occurs with small probabilit The third step in the dangling node implementation of the
' P ycomputation in Fig. 33 is to perform the first two columns of

by choosingk to be large. ; . : .
) . . .. . single-qubit measurements. The fourth step is to add in the
The third step of the dangling node implementation is tofine?l tV\?O columns of the cluster, which ispdone using the

ﬁ]etr::)e”l]mtgg :}gst;ttgvgocrgljuur?;isogf \?\;Zgllﬁeﬂugg S; iistgr(tar?; esn;is_ame. procedure as fpr single-quk_nit c_omputations._The fifth
ond step, effectively adding anbther two columns of qubitsand final step of the |_mplementat|on is to do the final four
into the (;Iuster and so on, through the entire course of th(e:olumns of smgle-qublt measurements in th? standard way.

' ' The generalization of the dangling node implementation

computation. The only variation comes at the very end of thei . S .
: ! o . 0 arbitrary multiqubit cluster-state computations follows the
computation, where there is no need to adjoin a microclustey

S . . same lines, alternating attempts to adjoin microclusters with
?v]:/ct:]eu{)ci’trrr?wilcnroilﬁjlstzegr’iItI)llJJsttlrgita%ai?\ v';/Ie cg;] add the S"mplertwo columns of single-qubit measurements. Each successful
V\I(l- have seen how a sinale- ubitgc.lust.er-state comout adjoinment of a microcluster adds two perfect extra columns

. : gie-qu ) P %o one or more rows of the cluster, while failure to adjoin
tion may be performed in the dangling node implementation . . ;
A : .correctly introduces a defect into the cluster, but occurs with
what about multiqubit cluster-state computations? The key is robability 201 p?2
to introduce a third type of microcluster, illustrated in Fig. P L

. : How does noise in the dangling node implementation map
32. Once again, note that these microclusters may be pre- "~ "~ SR .
) ) : .~ .To noise in the quantum circuit model? A heuristic argument
pared in constant expected time using nondeterministic

is as follows. Roughly speaking, each gate in the original
CPHASE gates. circuit is simulated by adjoining a microcluster and perform-
Consider the cluster-state computation depicted in Fig. 33: y ad] 9 P

We may implement this computation as follows. The first

step is to prepare the first two columns of the cluster. This

may be done using the nondeterministRHASEgate in con- O O
stant time, as described earlier.

The second step of the dangling node implementation is
to add in two additional columns to the cluster. This is done
in a similar fashion to the adjoinment of a microcluster in the
single-qubit case. In this case, success requires that we ad- O
join the microcluster in Fig. 32 to two different dangling
nodes, one on the top row of the computation in Fig. 33, the
other to the bottom row. Success in adjoinment to both rows
results in the cluster of Fig. 84) being prepared. A simple

T
-/

First base node <
T~ « =5 k dangling nodes

-,
-

Sccond base node - O_O
T «- 25 k dangling nodes

-

Bodbo Fodbs

(b)

FIG. 32. This microcluster is used in the dangling node imple- FIG. 34. The cluster after success and failure to adjoin the mi-
mentation of multiqubit cluster-state quantum computations. crocluster of Fig. 32.
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ing some single-qubit measurements. Adjoining a microclus- [+)—g—— D=

ter involves up tac,k? physical operations, wheig is some [+) D=

positive constant in the range %017, If each operation is

performed with error strengthy, then the total associated [+) D-
noise is at most;k?». There is also an intrinsic failure prob- I+) D=
ability, due to the nondeterminism of the gates, which causes [+) -

defects in the cluster. This probability is bounded tg?‘é.
Finally, the noise contribution due to the single-qubit mea-
surements scales g7, wherec, is a constant of order 20 FIG. 35. The literal circuit for a two-at-a-time implementation
In consequence we expect that noise of strengtim the o a single-qubit cluster-state computation, with the noisy quantum
dangling node implementation will map to equivalent noisememory steps explicitly indicated by crosses. For simplicity we
of strengthc,k?7+c,7+2pf in the quantum circuit model. have combined the single-qubit rotations and computational basis
It follows that if 7y, is the threshold in the quantum circuit measurements into a single-qubit measurement in some other basis,
model then providedsn satisfies clk2n+cz77+2p'f"1$ nn  hot explicitly specified.
fault-tolerant computation is possible using optical cluster-
state computation. The goal of the next four subsections is to oy to deal with this type of leakage error is well under-
make this heuristic argument rigorous. We will see that thesiooq in the theory of quantum error correction, and is ad-
rigorous conclusions are in qualitative agreement with thigjressed by several of the standard threshold theorems. In
heuristic analysis, with some minor quantitative changes. particular, loss detection techniques are used in the threshold
An issue we have glossed over in our discussion is thainalysis[43] accompanying the original KLM proposal for
the dangling node implementation restricts the structure ofptical quantum computation. This type of error is not, how-
the clusters that may be formed. In particular, connectiongyer, explicitly addressed by the threshold theoreni26i.
between rows of the cluster can only be formed within oddathough we believe that the result §29] can likely be
numbered columns of the cluster. This has the effect ohdapted to cope with such leakage errors, we have not yet
slightly restricting the quantum circuit operations that mayperformed a complete analysis. Such an analysis will appear
be directly simulated with such a cluster. Using an argumeni, fyture work. In the meantime, our results apply to the

stricted canonical set of operations can be used to prove a

threshold theorem analogous to theorem 4. We omit the de-

tails of this argument, which is straightforward. C. The two-at-a-time implementation of cluster-state
quantum computation

[4+) = - -

B. The noise model in optical cluster-state computation In Sec. IV we explained how noise in a one-buffered

We assume that noise in optical cluster-state computatioirmplementation of cluster-state computation may be mapped
follows essentially the same model as was introduced in Se¢o noise in a quantum circuit computation. In this section we
IV A for cluster-state computation with deterministeHASE ~ will extend those results to a more complex implementation
gates. In particular, we assume that noisy preparation anaf cluster-state computation, which we call a two-at-a-time
measurement can be modeled as perfect operations, accoimplementation.
panied by noisy quantum memory steps. To model noisy uni- A two-at-a-time implementation is similar to the one-
tary operations we assume that each row in the cluster has itsiffered implementation, except now qubits are added into
own environment, and that noninteracting rows have noninthe cluster two columns at a time, and the single-qubit mea-
teracting environments. The only new element that needs teurements are performed two columns at a time. In particu-
be accounted for is when unitary operations are performethr, we assume that deterministeHASE gates are available
which involve the ancilla used during the nondeterministicin a two-at-a-time implementation. More explicitly:

CPHASE gate. To cope with this, we make the pessimistic Prepare columns one through four of the cluster, using
assumption that these ancilla share a common environmepteparations an{deterministi¢ CPHASE gates.

with whichever rows of the cluster are involved in the at- Perform the first two columns of measurements.
temptedcPHASE gate. Prepare columns five and six, usijtg) preparations and

This noise model omits a significant possible source ofcPHASEgates to adjoin the extra columns.
noise, that of photon loss. The basic problem, as alluded to Perform the third and fourth columns of measurements.
earlier, is that the noise model we are using, based on that in Keep alternating the preparation of two extra columns
[29], does not allow leakage errors. Noise is assumed to arisgith the measurement of two extra columns, until the end of
from the interaction of a qubit with some environment. Inthe computation.
reality, noise may sometimes have a rather different naturelhe literal circuit for a two-at-a-time implementation of a
In particular, a qubit is sometimes a two-dimensional sub-single-qubit cluster-state computation is shown in Fig. 35. In
space of a larger physical state space, and noise may be dthés figure we have explicitly drawn in the noisy quantum
not to interaction with an environment, but rather to leakagememory steps, using little crosses to indicate when a quan-
of the state of the qubit into some other part of the statdum memory step is being performed. Including these explic-
space. This is exactly the type of error caused by photon losfly makes it easier to map this implementation onto an
in optical quantum computation. equivalent one-buffered implementation.
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I+) [+} |
.= I IMEAS.
[+) 1 [|+) -
)
) D- R

[+) I D= qubits’ E [+ ADD :MEAS.
[+ -- T+ -
) B +) ADD |
H— .
FIG. 36. The output of this circuit is equivalent to the output of +—] ADD| _.

m—  --
T )

the literal circuit for the two-at-a-time implementation in Fig. 35.

Commuting the operations in Fig. 35 forward in time, we |G, 37. The literal circuit for a dangling node implementation
see that that the output of Fig. 35 is equivalent to the outpugf a single-qubit cluster-state computation. We have chosen to use
of the circuit in Fig. 36. Note that doing this commutation an implementation wittk=3 dangling nodes; the circuit for other
requires the use of proposition 4, since noisy operations ofialues ofk follows similar lines.
different qubits that are on the same row of the cluster may
potentially involve the same environment, and so may no(/vherew) € S. Then there exists a unitaby/ acting on reg-
commute. Fortunately, proposition 4 allows this commuta-gier B such that
tion to be performed without increasing the strength of the
underlying noise. | U= (Vo Wl = V2(1 - Vp). (3D

Inspection of Fig. 36 reveals that this circuit may be re- o ] ]
garded as the literal circuit for a one-buffered implementa- Proof. By definition, for all stateqy) in registerA we
tion of a cluster-state computation, and thus is equivalent thave
a noisy quantum circuit, using the results of Sec. IV. A simi- _ - , [\ o
lar argﬁ%ent can be used togmap noise in a multiqubit two- U)8) = pVIIA") + N1 = ply ")l B
at-a-time implementation of a cluster-state computation ta_et W be a unitary operator taking) to |8’). Then
equivalent noise in a quantum circuit. We omit the details of — JE—
the argument, which is a straightforward extension of the (U—=V@W)[)|B8)=(p-1V||B')+ V1 -ply)|B".

(32)

single-qubit case. (33
D. Postselected gates Evaluating the norm, and rgstricting to normalized states
|y»|B) which are inT, we obtain the result. O

In order to map noise in optical cluster-state computation
into the quantum circuit model, we need a simple lemma
about postselected quantum gates. In this subsection we pro-E- How noise in optical cluster-state computation maps to
vide a formal definition of what we call anitary postse- noise in the quantum circuit model

lected gateand prove the required lemma. The unitary post-  |n this subsection we explain how noise in the dangling
selected gates discussed here differ in an important respegbde implementation of optical cluster-state computation is
from the postselected gates in the discussion of optical quamapped to equivalent noise in the two-at-a-time implemen-
tum computing in Sec. Ill. In the optical gates, success of theation described in Sec. V C. The results in Sec. V C may
quantum gate is conditional on some measurement outcomfen be used to map that noise to equivalent noise in the
occurring. In the present scenario the postselected gate is @tiginal quantum circuit, which enables us to complete the
unitary, i.e., no measurement is involved. The connectionhreshold proof. Our main focus here is on noise in single-
between the two types of postselection is made by replacingubit cluster-state computations, since the multiqubit case
the measurement by an equivalent unitary process; we willlows similar lines, and requires no new ideas.
see an explicit example of how this works in the next sub- Consider a dangling node implementation of a single-
section. qubit cluster-state computation. The literal circuit for such a
Let U be a unitary gate acting on two registers, labéled computation is depicted in Fig. 37. The first step of the cir-

andB. B is initially in some fixed stat¢g), while A may be  cuit sets up the initial microcluster. The remaining steps of
in an arbitrary statéy). Let V be a unitary gate acting on

registerA alone.U is said to be ainitary postselected gate

[} — [+#)
that implements V with probability i for all |), ' | | )
[ [ _ Al /! k. -: —
Ulgl8y = \pVIgIB) +\1=ply)lB).  (30) e T I A
where |8’) is some fixed state, ang”) is orthonormal to T4 qu’;its_i +)
1B). ) — —

Lemma 1LetU be a unitary postselected gate implement-
ing V with probability p, on registersA andB, and when3) FIG. 38. The operatiompp satisfies the approximate circuit
is input to the registeB. Let S be a subspace of the state identity illustrated here. This identity becomes more exack &s
space for registeA, and letT be the subspace of the total increased, and the level of noise in the physical operations used to
state space foAB that contains states of the fort)|3), do the operation is decreased.
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FIG. 39. The output of this imperfect circuit is the same as the
output of the noisy cluster-state computation. The S@te is an

ancilla preparednoisily) offline; it contains microclusters, the an-
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:MEAS.
_:MEAS.
G --
[ --
] --
o) —H H— -
) — --
Janc) —f— - -

FIG. 41. The output of this imperfect circuit is the same as the

cillas used in the KLMcPHASE and qubits used to simulate the output of the noisy dangling node cluster-state computation.
classical control and feedforward in the dangling node implemen-
tation. Note that the ancilla line is marked by a slash to indicate thahecause(a) the attempt to add extra columns sometimes
fails, resulting(even in the ideal case of perfect operatjons

in the cluster of Fig. 3M), and (b) the physical operations
the circuit alternate between applications of the operatiomsed are inevitably somewhat noisy.

it involves many systems, not just a single qubit.

ADD, which effectively adds two extra columns of qubits to
the cluster, and the operatiotEASURE, which implements

The next step of the proof is to replace the measurements,
classical control and feedforward performed in #m op-

the desired single-qubit measurements and feedforward @fration by equivalent ancilla preparations and unitary quan-
measurement result¢Note that we have omitted ancillas, tum operations, in a similar fashion to our threshold proof for
classical processing of data, and feedforward from the visualeterministiccPHASE gates in Sec. IV. The result is an op-
erationQADD, involving only quantum systems, perfect an-
The operatiompbd may be broken down into the follow- cilla preparation, and noisy unitary operations. Note that,
once again, we model noisy ancilla preparation by perfect
Preparation of microcluster states which we attempt taancilla preparation, followed by a noisy quantum memory
step. The output of the noisy dangling node cluster-state
All quantum gates applied in the process of attempting taccomputation is thus the same as the output of the imperfect
adjoin the additional microclusters, including nondeterminis-circuit illustrated in Fig. 39.
As in the deterministic case, we may insert fictitious per-
fect extra gates betweepaDD operations without changing
the overall output, as illustrated in Fig. 40. The entire noisy

depiction, for simplicity)

ing operations.

adjoin to the existing cluster.
tic CPHASE gates.

Ancillas used in the nondeterministi®HASE gates.
All the classical control and feedforward.

The computational basis measurements and Bcgdera-

cluster-state computation is thus equivalent to the repeating

tions needed to remove undesired qubits from the cluster. circuit illustrated in Fig. 41, where the gafeis as defined in
In addition to these physical operations, to simplify theFig. 42.

analysis it is convenient to append some fictitious perfect

In our analysis it is convenient to distinguish between the

controlledswaApP operations to ensure that the effective outputperfect gateG, and the imperfect gat&,, which also in-
qubits always appear on the same output lines. That is, thesgudes the effects of noise due to interactions with the envi-
controlledswAp operations effectively change the labels onronment, E. Note that due to the chaining property,
the qubits to ensure that the same qubits always act as the, ,e(G,G,) <N», where the system® and A are as de-
output, but otherwise don't affect the output state. The opfined in Fig. 42,N is the total number of noisy operations
erations are chosen so that the approximate circuit identitihvolved in the operatiorG,, and » is the maximal noise

illustrated in Fig. 38 holds. This identity illustrates the fact strength of any of those operations. Simple counting shows
that the result of attempting to add two extra columns ofthat N<c,k? for some positive constant; in the range

qubits to the cluster of Fig. 29 results, with high probability, 10°— 1, and SOAQ:AE(GaGn)gclkZﬂ-

in the cluster of Fig. 3@). The identity fails to be exact

) |

) [ | [MEAs.

) H

) QADD [ ] | [MEAs.

) -

|+) QADD I --
o) —f— ) -

) -
oo |

With these definitions we see th@&tis a unitary postse-

lected gate acting on the regist&@sandA, implementing the
gateV defined in Fig. 43 on registed, with probability pg

A: |anc)

Q
1]

QADD I

/

lanc) T

FIG. 40. We may insert some fictitious perfect gates between the FIG. 42. The definition of the gat® used in Fig. 41. This figure
also defines subsystem labé)sand A.

operations in Fig. 39, without changing the output.
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FIG. 43. The definition of the gate. jang) -
=1-pfL. Let S be the subspace of states frof the form FIG. 44. The output of this noisy circuit is the same as the

|| +)--|+), where|y) is an arbitrary single-qubit state. Let output of the noisy cluster-state computation.

T be the subspace of states for the syst@fwhich are of

the form|¢)|ang, where|¢) is any state ir§, and|ang is the  pining this with the results about the two-at-a-time imple-

initial state of the ancillé\. It is also useful to defin&’ to be mentation in Sec. V C, we see that a noisy dang"ng node
the subspace of the combined systQAE containing states  jmplementation of a single-qubit cluster-state computation is
of the form|$)se®[ang, where|g)s is an arbitrary state in - equivalent to a noisy single-qubit quantum circuit computa-
S®E. Applying lemma 1, we conclude that there exists ation. Noise of strengthy in the dangling node implementa-

unitary W acting onA such that tion is mapped to equivalent noise of strengik’z,+c,7
/—’,_ _ ““"_ . . . .
1Glr - (V& W) = v2(1 - Vpy). (34) +21/2(1-py) in the quantum circuit model of computation,

_ _ where the extra contributioty 7 is due to noise in the single-
Recalling thatAgae(G, G,) < c;k?7, we see that there exists qubit measurements, arg is a positive constant of order

unitary Gg acting onE such that 10°.
Similar reasoning can be used to map noise of strempgth
- 2
[Ga = G ® Gel| < cik®s. (35) in a dangling node implementation of a multiqubit cluster-
Restricting to the subspadé we have state computation back to the original quantum circuit with
i 2 \2(1-\py), where
Gl = (G ® Gl < ckem. 36 noise of strength at most;k 17+c27,4_r2 2(1-+py), Wi e
[ Gl =« elvl < cky (36 the constants; andc, may now be different, but are still of
From Eq.(34) we deduce that the same order, anpl=1-2p{ 1+ p?"2 The only difference

T in the proof is that in addition to th& operations, multiqubit

[(G® Gy — (Ve W® Gg)lr|=V2(1-Vpy). (37)  computations also involve analogous operations based on the

process of adjoining the more complex microcluster of Fig.

32. However, the analysis for such operations goes through

in exactly the same way as in the single-qubit case.

[ Gilr = (V@ W® Gg)||| < ciknp+V2(1 - \HS) Summing up, we have shown that noise of strength up to
n in a dangling node implementation of a cluster-state com-

(38) putation is_equivalent to noise of strength at mogt®y

Applying the second unitary extension theorem, theorem 2+C,n+2 2(1—\@) in the original quantum circuit, wheig

we see that there exists unita@, whose action oril” is IS & positive constant of order (19102 c, is a positive con-

identical to the action 06,, and such that stant of order 18) andp,=1 -2+ p?"2 Thus, providedk
and 7 satisfy

Using the triangle inequality and Eg&6) and (37) we ob-
tain

G, - (Ve W® Gg)| < 2c,k27+ 22(1 - py). (39)

Summarizing, the output of the noisy cluster-state compu- _ . _
tation is the same as the output of the noisy circuit in Fig. 44it is possible to compute fault-tolerantly in the optical
The blocks of two imperfectPHASE gates shown in this cluster-state proposal for computation. This may be re-

circuit represent the operatid®,, which we have seen sat- Phrased as the condition:

Cikn + Com+ 2V2(1 = Vpg) < iy, (41)

clr —
isfies _ __ n< 77ocs — i — 2V2(1 = Vpy) (42)
AQ.AE(V G,) < 2¢,K?n+ 2\2(1 - \py), (40) tath cki+c,

wherep,=1-p¥* is the probability of successfully adjoining We can always ensure thajs, >0 by choosingk suffi-
a microcluster, ang is the probability of a nondeterministic ciently large. Provided this condltlon is satlsfleﬁ,th is thus
CPHASE failing. Examining Fig. 44, we see that a dangling a threshold for optical cluster-state computation.

node implementation using nondeterministic gates is equiva-

lent to a noisy two-at-a-time deterministic implementation, VI. CONCLUSION

where the additional columns of the cluster are added with In this paper we have proved two fault-tolerant threshold
noise of total strength at most&2n+242(1-1py). Com-  theorems for the cluster-state model of quantum computa-
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tion. Our first threshold theorem applies to implementationsorrespondence relating to their work on fault-tolerance and
in which deterministiqbut noisy entangling gates are avail- measurement-based quantum computing.

able. Our second threshold theorem is specifically adapted to

the case of optical quantum computation, where entangling

gates are performed nondeterministically. In both cases ourAPPENDIX A: THE UNITARY EXTENSION THEOREMS

threshold theorems hold for quite pessimistic noise models, |, this appendix we restate and prove the first and second
allowing non-Markovian noise applied by an intelligent ad‘unitary extension theorems, from Sec. Il A.

versary who can exploit constructive interference to enhance . . . ~

the effects of the noise, and even cause errors in the classical Theorem_5 .(F'rSt unitary extension theorerhpt U, U
computation and feedforward of measurement results. AndV be unitaries acting on a I:hlbert SpateSupposeS is
drawback of our noise models is that they do not yet allow® subspace of such thaty andU have the same action on
the possibility of leakage errors, like photon loss in optics.S, i.e., U|s= Uls (Note that we do not assume thatandU
We expect to remove this drawback in future work, by com-jgaye the subspacginvariant, so Ulsand Uls should be

bining the ideas if{29] with well-established methods for -onsidered as maps froiinto T.) Then there exists a uni-
dealing with photon loss, e.§43].

Our focus has been on proving that a finite threshetd
ists for cluster-state computation, rather than on obtaining a ”;/_ G|| <|v-u. (A1)
precise numerical evaluation of the threshold. This is consis-
tent with our general philosophy of understanding the thresh- It is worth noting that the proof below holds not just for
old through a two-part process: first, rigorously proving thethe matrix norm, but for any norm such tH@B|<|Al| |B
existence of a finite threshold for some large class of noisand||W|<1 for all unitariesw.
models; and second, through a combination of numerical and Proof. Let P be the projector onto the subspegeand let
analytic work obtaining a realistic estimate of the thresholdQ=1-P be the projector onto the orthocomplemensan T.
for some specific and physically-motivated noise model. InDefine
this paper we have obtained a rigorous proof that a finite

tary extensiorV of V| to the entire spac& such that

3

threshold exists. Detailed numerical simulation and optimi- V=VP+VU'UQ. (A2)
zation of the threshold value for realistic noise models is . ~ . ) )
underway, and will be reported elsewhéas. We will show thatV has the required properties. It is clear

Our investigations in this paper have been geared towarthatV is an extension ofV|s. To prove unitarity o we first
variants of the one-way quantum computing model intro-observe that
duced by Raussendorf and Briedédl. However, the tech- ~ ~
niques we have proposed seem quite generally applicable to u'uQ=qQu'u. (A3)
the task qf making measurement-bas_ed schemes for quanturg prove this equation, observe that it is equivalent to
computation fault tolerant. It seems likely that schemes such .~~~ _ B
as those proposed (12,8,9,23 (see also references thergin U'UP=PU'U, since Q=I-P. E’Ut U'UP=PUU fgjlows
can be made fault tolerant using similar ideas. Particularlygasily from the fact thatU|s= U|s. The unitarity ofV fol-
appealing from a theoretical point of view is the possibility lows from Eqgs.(A2) and (A3), and some algebra:
of fault-tolerant computation using measurement alone, with

no unitary gates whatsoevéexcepting quantum memory W'=VPV +Vv(UTU)QU) V! (A4)
This might be done using, for example, a scheme su¢B]as
or one of the simpler variants that has since been proposed =VPV' + VQV (A5)
[36—38,41

The most important conclusion from our results is that =vV' (AB)
noise need not be an obstacle to scalable quantum computa-
tion using cluster states. In particular, our results provide = (A7)

encouraging evidence that practical proposals for cluster-

state quantum computation using neutral atgdisand op- To bound||V—D|| observe that

tics [10] are, in principle, fully scalable approaches to quan- o _ L

tum computation. V-U=VP+VU'UQ-UP-UQ. (A8)

Observing thaUP=UP and insertingdU"=1 we get
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FIG. 45. Identity 1 of Appendix B.
Theorem 6 (Second unitary extension theordra) U and

V be unitary operations acting onf@nite-dimensionalinner
product spacd. SupposeS is a subspace of. Then there

exists a unitary operatiow such that V|s= V|s and

U=Vl =2|Uls- VI (A11)
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+)

FIG. 46. Identity 2 of Appendix B.

I+)

tricesX and Y if Y-X is a positive matrix. We defingX|
= XX,

Proposition 8 SupposeM is a matrix such thafM|<I.
Then|l -M||= 1-0min(M).

Proof. Choose a normalized vectdy) so that 3|
=0min(M)|). By the singular value decompositidih—M||
=1 -LySmRull=[W-2yl, wherew=L};R},. Thus

The proof of the second unitary extension theorem is

somewhat more complex than the proof of the first. We begin [1=M[=[(W=2|H (A18)
the proof by introducing some notation related to the singular

value decomposition of a matrix, and then we state and prove - _ A19
some simple lemmas about singular values and matrix W = =l (AL9)
norms.

Recall that the singular value decomposition states that an =1-0min(M), (A20)
arbitrarymx n matrix M can be writterM =Ly 2y Ry, where  where we have used the triangle inequality. O
Ly is anmX m unitary matrix,Ry is annX n unitary matrix, Proposition 9 Let
and X, is anmxXn matrix, all of whose entries are zero,
except the diagonal entri¢X);; =o;(M), known as thesin- M = A B (A21)
gular values which are non-negative and arranged in de- BT C

creasing orderg;(M)=0,(M)=.... It is easy to see that the
singular values are determined by the equat'na]rﬁM)2
=\ (M™™M)=)\;(MMT), the jth largest eigenvalues of the ma-
trices M™ and MMT. It is also useful to note thgiM||
=01(M). WhenM is anmX m matrix (i.e., a square matrjx
we will use the notations,,(M)=o0,(M) to denote the
smallest singular value d¥l.

Proposition 7 SupposeJ is a unitary matrix that can be

written
U= ,

B D
whereA is anmX m matrix, BisnxXm, Cis mXxn, andD is
nXn. Then oyin(A) = omin(D).

Proof. Inspection of the equationd™U=UU"=| implies
that A"fA+B'B=I,, and BB'+DD'=1,, where we usd, to
denote thek X k identity matrix. Using these equations we
have

(A12)

Tmin(A)? = N(ATA) (A13)
=1-),(B™B) (A14)
=1-)\,(BB") (A15)
=\,(DD") (A16)
=0omin(D)?, (A17)

from which the result follows. An alternate proof of this
proposition follows immediately from the well-known CS
decomposition of linear algebi@ee, for example, theorem
VII.1.6 on p. 196 of{44]). O

be a positivdand thus Hermitiansquare matrix. We assume
AismXm, Bis mxn, andC is nxXn. Then

M| < [|A]] +]C]. (A22)

Proof. This proposition can be viewed as a special case of
Aronszajn’s inequality, theorem I11.2.9 on p. 64 [ef4]. Al-
ternately, sinceM is positive we can find a block matriR
=[D,D,] such thatM=D'D, and thusA=DID, and C
=DJD,. We have

IM[[=x4(D'D) (A23)
=\,(DDY) (A24)
=\,(D;D] + D,D}) (A25)
<\(D;D})) +\4(D,D))  (A26)
=[|All+ 18I, (A27)

where the second-last line follows from the well-known ei-
genvalue inequalityA(A+B)<\,(A)+\,(B), true for all
Hermitian matriceA andB. O

Proof of the second unitary extension theoréfie prove
the theorem in two parts. In the first part we prove the result
for the casdJ=I. In the second part we show that the general
result follows from the case whdo=I.

For the first part, we writ&/ in block-diagonal form as

4

ﬁ G|

}

To state the next proposition we need to introduce some

additional notation. We define the partial ordéex Y for ma-

FIG. 47. Identity 3 of Appendix B.

042323-24



FAULT-TOLERANT QUANTUM COMPUTATION WITH...

J’T I S
] ]
FIG. 48. Identity 4 of Appendix B.
A C
V= [ ] (A28)
B D

where the first block represents a basis$pand the second

block represents a basis for the orthocomplengnt_et the
singular value decomposition &f be D=L3pRp. Rotating
by LTD to change the basis & we see thaV can be written
in the new basis as

v—{A' c } (A29)
B’ SpRolp )’

whereA’,B’,C’ represent the action &f with respect to the

new basis. We define the extensﬁ!rby

T/—v{l 0]
0 LIRL

_[AV CU}
B 3

where C"=C'L{RE. It is clear thatV is unitary and Vs

(A30)

(A31)
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FIG. 49. Circuit identity of Proposition 5.

ThenV is a unitary matrix such tha¥|s= V|s and

V=ul =V -1 (A36)
<2|u'Vls- 1|4 (A37)
=2| Vls— Ul4|. (A38)

O

An alternate proof of the second unitary extension theo-
rem may be given, following similar lines, but based on the
well-known CS decomposition from linear algebra. We have
taken the approach presented here as it is only slightly more
complex than the alternate proof, and relies on less back-
ground material.

APPENDIX B: PROOF OF PROPOSITION 5

In this appendix we prove proposition 5, which asserts the
truth of the circuit identity in Fig. 20. This proposition estab-
lishes the correspondence between blo€, and gates

=V All that remains to complete the first part of the proofis 47 i the quantum circuit.

to bound|V~1||. We have

V=12 =V = =) (A32)
=21 -V - V| (A33)
~ {2| A -AT -Cr- B'T]
- -t o2a-23 ||
(A34)
Applying proposition 9 we obtain
IV-1<|21 -A = AT|+]21 - 255||.  (A35)

But  [2-A =A< [I-A+I-AT =21 A< 2] 1s
-V|[d. We also have [21-23p||=2-20,,,(D)=2
—20min(A) <2||I-A"|<2||l|]s~ V|J|. The first part of the
proof follows.

For the second part of the proof we $¢t=1,V'=U"V.
Then by the first part of the proof there exists unitﬁr‘)such

that V'|s= U'V|g and|[V’ -1]|<2| UTV|s-I4|. SetV=UV".

The result follows by making use of four commutation
relations between the gates that constit@B,. All these
relations are readily verified, so they are given without proof.

Identity 1 The circuit identity of Fig. 45 holds.

Note that commuting the controlledoT (cNOT) through
the controlledHZ, , leaves us with the single-qulditZ, on
the right-hand side. It is also easy to verify the following
identity which is used to simplify the controlldd, , gate of
Fig. 9.

Identity 2 The identity of Fig. 46 holds where the second
qubit is in the state+).

The remaining two identities concern the commutativity
properties ofcNOT (controlledNOT) and CPHASE gates when
the control of one operator is the target of the operator im-
mediately following or preceding it.

Identity 3 The circuit identity of Fig. 47 holds.

Identity 4 The circuit identity of Fig. 48 holds.

By applying these commutation relations to the definition
of QB, in Fig. 17 we obtain the identity shown in Fig. 49
which is our desired result. Interested readers are invited to
verify this by hand.
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