243,731 research outputs found

    Introducing a Research Program for Quantum Humanities: Theoretical Implications

    Full text link
    Quantum computing is a new form of computing that is based on the principles of quantum mechanics. It has the potential to revolutionize many fields, including the humanities and social sciences. The idea behind quantum humanities is to explore the potential of quantum computing to answer new questions in these fields, as well as to consider the potential societal impacts of this technology. This paper proposes a research program for quantum humanities, which includes the application of quantum algorithms to humanities and social science research, the reflection on the methods and techniques of quantum computing, and the evaluation of its potential societal implications. This research program aims to define the field of quantum humanities and to establish it as a meaningful part of the humanities and social sciences.Comment: 21 pages, 2 figure

    Four-level and two-qubit systems, sub-algebras, and unitary integration

    Get PDF
    Four-level systems in quantum optics, and for representing two qubits in quantum computing, are difficult to solve for general time-dependent Hamiltonians. A systematic procedure is presented which combines analytical handling of the algebraic operator aspects with simple solutions of classical, first-order differential equations. In particular, by exploiting su(2)⊕su(2)su(2) \oplus su(2) and su(2)⊕su(2)⊕u(1)su(2) \oplus su(2) \oplus u(1) sub-algebras of the full SU(4) dynamical group of the system, the non-trivial part of the final calculation is reduced to a single Riccati (first order, quadratically nonlinear) equation, itself simply solved. Examples are provided of two-qubit problems from the recent literature, including implementation of two-qubit gates with Josephson junctions.Comment: 1 gzip file with 1 tex and 9 eps figure files. Unpack with command: gunzip RSU05.tar.g

    Quantum vs. Classical Read-once Branching Programs

    Full text link
    The paper presents the first nontrivial upper and lower bounds for (non-oblivious) quantum read-once branching programs. It is shown that the computational power of quantum and classical read-once branching programs is incomparable in the following sense: (i) A simple, explicit boolean function on 2n input bits is presented that is computable by error-free quantum read-once branching programs of size O(n^3), while each classical randomized read-once branching program and each quantum OBDD for this function with bounded two-sided error requires size 2^{\Omega(n)}. (ii) Quantum branching programs reading each input variable exactly once are shown to require size 2^{\Omega(n)} for computing the set-disjointness function DISJ_n from communication complexity theory with two-sided error bounded by a constant smaller than 1/2-2\sqrt{3}/7. This function is trivially computable even by deterministic OBDDs of linear size. The technically most involved part is the proof of the lower bound in (ii). For this, a new model of quantum multi-partition communication protocols is introduced and a suitable extension of the information cost technique of Jain, Radhakrishnan, and Sen (2003) to this model is presented.Comment: 35 pages. Lower bound for disjointness: Error in application of info theory corrected and regularity of quantum read-once BPs (each variable at least once) added as additional assumption of the theorem. Some more informal explanations adde
    • …
    corecore