16,956 research outputs found

    Quantum Certificate Complexity

    Get PDF
    Given a Boolean function f, we study two natural generalizations of the certificate complexity C(f): the randomized certificate complexity RC(f) and the quantum certificate complexity QC(f). Using Ambainis' adversary method, we exactly characterize QC(f) as the square root of RC(f). We then use this result to prove the new relation R0(f) = O(Q2(f)^2 Q0(f) log n) for total f, where R0, Q2, and Q0 are zero-error randomized, bounded-error quantum, and zero-error quantum query complexities respectively. Finally we give asymptotic gaps between the measures, including a total f for which C(f) is superquadratic in QC(f), and a symmetric partial f for which QC(f) = O(1) yet Q2(f) = Omega(n/log n).Comment: 9 page

    On the Power of Non-Adaptive Learning Graphs

    Full text link
    We introduce a notion of the quantum query complexity of a certificate structure. This is a formalisation of a well-known observation that many quantum query algorithms only require the knowledge of the disposition of possible certificates in the input string, not the precise values therein. Next, we derive a dual formulation of the complexity of a non-adaptive learning graph, and use it to show that non-adaptive learning graphs are tight for all certificate structures. By this, we mean that there exists a function possessing the certificate structure and such that a learning graph gives an optimal quantum query algorithm for it. For a special case of certificate structures generated by certificates of bounded size, we construct a relatively general class of functions having this property. The construction is based on orthogonal arrays, and generalizes the quantum query lower bound for the kk-sum problem derived recently in arXiv:1206.6528. Finally, we use these results to show that the learning graph for the triangle problem from arXiv:1210.1014 is almost optimal in these settings. This also gives a quantum query lower bound for the triangle-sum problem.Comment: 16 pages, 1.5 figures v2: the main result generalised for all certificate structures, a bug in the proof of Proposition 17 fixe

    Certificate games

    Get PDF
    We introduce and study Certificate Game complexity, a measure of complexity based on the probability of winning a game where two players are given inputs with different function values and are asked to output ii such that xiyix_i\neq y_i (zero-communication setting). We give upper and lower bounds for private coin, public coin, shared entanglement and non-signaling strategies, and give some separations. We show that complexity in the public coin model is upper bounded by Randomized query and Certificate complexity. On the other hand, it is lower bounded by fractional and randomized certificate complexity, making it a good candidate to prove strong lower bounds on randomized query complexity. Complexity in the private coin model is bounded from below by zero-error randomized query complexity. The quantum measure highlights an interesting and surprising difference between classical and quantum query models. Whereas the public coin certificate game complexity is bounded from above by randomized query complexity, the quantum certificate game complexity can be quadratically larger than quantum query complexity. We use non-signaling, a notion from quantum information, to give a lower bound of nn on the quantum certificate game complexity of the OROR function, whose quantum query complexity is Θ(n)\Theta(\sqrt{n}), then go on to show that this ``non-signaling bottleneck'' applies to all functions with high sensitivity, block sensitivity or fractional block sensitivity. We consider the single-bit version of certificate games (inputs of the two players have Hamming distance 11). We prove that the single-bit version of certificate game complexity with shared randomness is equal to sensitivity up to constant factors, giving a new characterization of sensitivity. The single-bit version with private randomness is equal to λ2\lambda^2, where λ\lambda is the spectral sensitivity.Comment: 43 pages, 1 figure, ITCS202

    Low-Sensitivity Functions from Unambiguous Certificates

    Get PDF
    We provide new query complexity separations against sensitivity for total Boolean functions: a power 33 separation between deterministic (and even randomized or quantum) query complexity and sensitivity, and a power 2.222.22 separation between certificate complexity and sensitivity. We get these separations by using a new connection between sensitivity and a seemingly unrelated measure called one-sided unambiguous certificate complexity (UCminUC_{min}). We also show that UCminUC_{min} is lower-bounded by fractional block sensitivity, which means we cannot use these techniques to get a super-quadratic separation between bs(f)bs(f) and s(f)s(f). We also provide a quadratic separation between the tree-sensitivity and decision tree complexity of Boolean functions, disproving a conjecture of Gopalan, Servedio, Tal, and Wigderson (CCC 2016). Along the way, we give a power 1.221.22 separation between certificate complexity and one-sided unambiguous certificate complexity, improving the power 1.1281.128 separation due to G\"o\"os (FOCS 2015). As a consequence, we obtain an improved Ω(log1.22n)\Omega(\log^{1.22} n) lower-bound on the co-nondeterministic communication complexity of the Clique vs. Independent Set problem.Comment: 25 pages. This version expands the results and adds Pooya Hatami and Avishay Tal as author

    Quantum Proofs

    Get PDF
    Quantum information and computation provide a fascinating twist on the notion of proofs in computational complexity theory. For instance, one may consider a quantum computational analogue of the complexity class \class{NP}, known as QMA, in which a quantum state plays the role of a proof (also called a certificate or witness), and is checked by a polynomial-time quantum computation. For some problems, the fact that a quantum proof state could be a superposition over exponentially many classical states appears to offer computational advantages over classical proof strings. In the interactive proof system setting, one may consider a verifier and one or more provers that exchange and process quantum information rather than classical information during an interaction for a given input string, giving rise to quantum complexity classes such as QIP, QSZK, and QMIP* that represent natural quantum analogues of IP, SZK, and MIP. While quantum interactive proof systems inherit some properties from their classical counterparts, they also possess distinct and uniquely quantum features that lead to an interesting landscape of complexity classes based on variants of this model. In this survey we provide an overview of many of the known results concerning quantum proofs, computational models based on this concept, and properties of the complexity classes they define. In particular, we discuss non-interactive proofs and the complexity class QMA, single-prover quantum interactive proof systems and the complexity class QIP, statistical zero-knowledge quantum interactive proof systems and the complexity class \class{QSZK}, and multiprover interactive proof systems and the complexity classes QMIP, QMIP*, and MIP*.Comment: Survey published by NOW publisher

    Quantum Discord and Quantum Computing - An Appraisal

    Full text link
    We discuss models of computing that are beyond classical. The primary motivation is to unearth the cause of nonclassical advantages in computation. Completeness results from computational complexity theory lead to the identification of very disparate problems, and offer a kaleidoscopic view into the realm of quantum enhancements in computation. Emphasis is placed on the `power of one qubit' model, and the boundary between quantum and classical correlations as delineated by quantum discord. A recent result by Eastin on the role of this boundary in the efficient classical simulation of quantum computation is discussed. Perceived drawbacks in the interpretation of quantum discord as a relevant certificate of quantum enhancements are addressed.Comment: To be published in the Special Issue of the International Journal of Quantum Information on "Quantum Correlations: entanglement and beyond." 11 pages, 4 figure

    On the Power of Non-adaptive Learning Graphs

    Get PDF
    We introduce a notion of the quantum query complexity of a certificate structure. This is a formalization of a well-known observation that many quantum query algorithms only require the knowledge of the position of possible certificates in the input string, not the precise values therein. Next, we derive a dual formulation of the complexity of a non-adaptive learning graph and use it to show that non-adaptive learning graphs are tight for all certificate structures. By this, we mean that there exists a function possessing the certificate structure such that a learning graph gives an optimal quantum query algorithm for it. For a special case of certificate structures generated by certificates of bounded size, we construct a relatively general class of functions having this property. The construction is based on orthogonal arrays and generalizes the quantum query lower bound for the k-sum problem derived recently by Belovs and Špalek (Proceeding of 4th ACM ITCS, 323–328, 2013). Finally, we use these results to show that the learning graph for the triangle problem by Lee et al. (Proceeding of 24th ACM-SIAM SODA, 1486–1502, 2013) is almost optimal in the above settings. This also gives a quantum query lower bound for the triangle sum problem.National Science Foundation (U.S.) (Scott Aaronson’s Alan T. Waterman Award
    corecore