We discuss models of computing that are beyond classical. The primary
motivation is to unearth the cause of nonclassical advantages in computation.
Completeness results from computational complexity theory lead to the
identification of very disparate problems, and offer a kaleidoscopic view into
the realm of quantum enhancements in computation. Emphasis is placed on the
`power of one qubit' model, and the boundary between quantum and classical
correlations as delineated by quantum discord. A recent result by Eastin on the
role of this boundary in the efficient classical simulation of quantum
computation is discussed. Perceived drawbacks in the interpretation of quantum
discord as a relevant certificate of quantum enhancements are addressed.Comment: To be published in the Special Issue of the International Journal of
Quantum Information on "Quantum Correlations: entanglement and beyond." 11
pages, 4 figure