40,632 research outputs found

    Quantum Algorithms for Computational Geometry Problems

    Get PDF
    We study quantum algorithms for problems in computational geometry, such as POINT-ON-3-LINES problem. In this problem, we are given a set of lines and we are asked to find a point that lies on at least 33 of these lines. POINT-ON-3-LINES and many other computational geometry problems are known to be 3SUM-HARD. That is, solving them classically requires time Ω(n2−o(1))\Omega(n^{2-o(1)}), unless there is faster algorithm for the well known 3SUM problem (in which we are given a set SS of nn integers and have to determine if there are a,b,c∈Sa, b, c \in S such that a+b+c=0a + b + c = 0). Quantumly, 3SUM can be solved in time O(nlog⁥n)O(n \log n) using Grover's quantum search algorithm. This leads to a question: can we solve POINT-ON-3-LINES and other 3SUM-HARD problems in O(nc)O(n^c) time quantumly, for c<2c<2? We answer this question affirmatively, by constructing a quantum algorithm that solves POINT-ON-3-LINES in time O(n1+o(1))O(n^{1 + o(1)}). The algorithm combines recursive use of amplitude amplification with geometrical ideas. We show that the same ideas give O(n1+o(1))O(n^{1 + o(1)}) time algorithm for many 3SUM-HARD geometrical problems.Comment: 10 page

    Limits of Quantum Speed-Ups for Computational Geometry and Other Problems: Fine-Grained Complexity via Quantum Walks

    Get PDF
    Many computational problems are subject to a quantum speed-up: one might find that a problem having an Opn3q-time or Opn2q-time classic algorithm can be solved by a known Opn1.5q-time or Opnq-time quantum algorithm. The question naturally arises: how much quantum speed-up is possible? The area of fine-grained complexity allows us to prove optimal lower-bounds on the complexity of various computational problems, based on the conjectured hardness of certain natural, well-studied problems. This theory has recently been extended to the quantum setting, in two independent papers by Buhrman, Patro and Speelman [7], and by Aaronson, Chia, Lin, Wang, and Zhang [1]. In this paper, we further extend the theory of fine-grained complexity to the quantum setting. A fundamental conjecture in the classical setting states that the 3SUM problem cannot be solved by (classical) algorithms in time Opn2ŽΔq, for any Δ ą 0. We formulate an analogous conjecture, the Quantum-3SUM-Conjecture, which states that there exist no sublinear Opn1ŽΔq-time quantum algorithms for the 3SUM problem. Based on the Quantum-3SUM-Conjecture, we show new lower-bounds on the time complexity of quantum algorithms for several computational problems. Most of our lower-bounds are optimal, in that they match known upper-bounds, and hence they imply tight limits on the quantum speedup that is possible for these problems. These results are proven by adapting to the quantum setting known classical fine-grained reductions from the 3SUM problem. This adaptation is not trivial, however, since the original classical reductions require pre-processing the input in various ways, e.g. by sorting it according to some order, and this pre-processing (provably) cannot be done in sublinear quantum time. We overcome this bottleneck by combining a quantum walk with a classical dynamic data-structure having a certain “history-independence” property. This type of construction has been used in the past to prove upper bounds, and here we use it for the first time as part of a reduction. This general proof strategy allows us to prove tight lower bounds on several computational-geometry problems, on Convolution-3SUM and on the 0-Edge-Weight-Triangle problem, conditional on the Quantum-3SUM-Conjecture. We believe this proof strategy will be useful in proving tight (conditional) lower-bounds, and limits on quantum speed-ups, for many other problems

    Sum-of-squares proofs and the quest toward optimal algorithms

    Full text link
    In order to obtain the best-known guarantees, algorithms are traditionally tailored to the particular problem we want to solve. Two recent developments, the Unique Games Conjecture (UGC) and the Sum-of-Squares (SOS) method, surprisingly suggest that this tailoring is not necessary and that a single efficient algorithm could achieve best possible guarantees for a wide range of different problems. The Unique Games Conjecture (UGC) is a tantalizing conjecture in computational complexity, which, if true, will shed light on the complexity of a great many problems. In particular this conjecture predicts that a single concrete algorithm provides optimal guarantees among all efficient algorithms for a large class of computational problems. The Sum-of-Squares (SOS) method is a general approach for solving systems of polynomial constraints. This approach is studied in several scientific disciplines, including real algebraic geometry, proof complexity, control theory, and mathematical programming, and has found applications in fields as diverse as quantum information theory, formal verification, game theory and many others. We survey some connections that were recently uncovered between the Unique Games Conjecture and the Sum-of-Squares method. In particular, we discuss new tools to rigorously bound the running time of the SOS method for obtaining approximate solutions to hard optimization problems, and how these tools give the potential for the sum-of-squares method to provide new guarantees for many problems of interest, and possibly to even refute the UGC.Comment: Survey. To appear in proceedings of ICM 201

    Quantum geometry and quantum algorithms

    Get PDF
    Motivated by algorithmic problems arising in quantum field theories whose dynamical variables are geometric in nature, we provide a quantum algorithm that efficiently approximates the colored Jones polynomial. The construction is based on the complete solution of Chern-Simons topological quantum field theory and its connection to Wess-Zumino-Witten conformal field theory. The colored Jones polynomial is expressed as the expectation value of the evolution of the q-deformed spin-network quantum automaton. A quantum circuit is constructed capable of simulating the automaton and hence of computing such expectation value. The latter is efficiently approximated using a standard sampling procedure in quantum computation.Comment: Submitted to J. Phys. A: Math-Gen, for the special issue ``The Quantum Universe'' in honor of G. C. Ghirard

    The geometry of quantum learning

    Full text link
    Concept learning provides a natural framework in which to place the problems solved by the quantum algorithms of Bernstein-Vazirani and Grover. By combining the tools used in these algorithms--quantum fast transforms and amplitude amplification--with a novel (in this context) tool--a solution method for geometrical optimization problems--we derive a general technique for quantum concept learning. We name this technique "Amplified Impatient Learning" and apply it to construct quantum algorithms solving two new problems: BATTLESHIP and MAJORITY, more efficiently than is possible classically.Comment: 20 pages, plain TeX with amssym.tex, related work at http://www.math.uga.edu/~hunziker/ and http://math.ucsd.edu/~dmeyer
    • 

    corecore