116 research outputs found

    Multiple-Description Coding by Dithered Delta-Sigma Quantization

    Get PDF
    We address the connection between the multiple-description (MD) problem and Delta-Sigma quantization. The inherent redundancy due to oversampling in Delta-Sigma quantization, and the simple linear-additive noise model resulting from dithered lattice quantization, allow us to construct a symmetric and time-invariant MD coding scheme. We show that the use of a noise shaping filter makes it possible to trade off central distortion for side distortion. Asymptotically as the dimension of the lattice vector quantizer and order of the noise shaping filter approach infinity, the entropy rate of the dithered Delta-Sigma quantization scheme approaches the symmetric two-channel MD rate-distortion function for a memoryless Gaussian source and MSE fidelity criterion, at any side-to-central distortion ratio and any resolution. In the optimal scheme, the infinite-order noise shaping filter must be minimum phase and have a piece-wise flat power spectrum with a single jump discontinuity. An important advantage of the proposed design is that it is symmetric in rate and distortion by construction, so the coding rates of the descriptions are identical and there is therefore no need for source splitting.Comment: Revised, restructured, significantly shortened and minor typos has been fixed. Accepted for publication in the IEEE Transactions on Information Theor

    Filter Bank Fusion Frames

    Get PDF
    In this paper we characterize and construct novel oversampled filter banks implementing fusion frames. A fusion frame is a sequence of orthogonal projection operators whose sum can be inverted in a numerically stable way. When properly designed, fusion frames can provide redundant encodings of signals which are optimally robust against certain types of noise and erasures. However, up to this point, few implementable constructions of such frames were known; we show how to construct them using oversampled filter banks. In this work, we first provide polyphase domain characterizations of filter bank fusion frames. We then use these characterizations to construct filter bank fusion frame versions of discrete wavelet and Gabor transforms, emphasizing those specific finite impulse response filters whose frequency responses are well-behaved.Comment: keywords: filter banks, frames, tight, fusion, erasures, polyphas

    Systematic DFT Frames: Principle, Eigenvalues Structure, and Applications

    Full text link
    Motivated by a host of recent applications requiring some amount of redundancy, frames are becoming a standard tool in the signal processing toolbox. In this paper, we study a specific class of frames, known as discrete Fourier transform (DFT) codes, and introduce the notion of systematic frames for this class. This is encouraged by a new application of frames, namely, distributed source coding that uses DFT codes for compression. Studying their extreme eigenvalues, we show that, unlike DFT frames, systematic DFT frames are not necessarily tight. Then, we come up with conditions for which these frames can be tight. In either case, the best and worst systematic frames are established in the minimum mean-squared reconstruction error sense. Eigenvalues of DFT frames and their subframes play a pivotal role in this work. Particularly, we derive some bounds on the extreme eigenvalues DFT subframes which are used to prove most of the results; these bounds are valuable independently

    Graded quantization for multiple description coding of compressive measurements

    Get PDF
    Compressed sensing (CS) is an emerging paradigm for acquisition of compressed representations of a sparse signal. Its low complexity is appealing for resource-constrained scenarios like sensor networks. However, such scenarios are often coupled with unreliable communication channels and providing robust transmission of the acquired data to a receiver is an issue. Multiple description coding (MDC) effectively combats channel losses for systems without feedback, thus raising the interest in developing MDC methods explicitly designed for the CS framework, and exploiting its properties. We propose a method called Graded Quantization (CS-GQ) that leverages the democratic property of compressive measurements to effectively implement MDC, and we provide methods to optimize its performance. A novel decoding algorithm based on the alternating directions method of multipliers is derived to reconstruct signals from a limited number of received descriptions. Simulations are performed to assess the performance of CS-GQ against other methods in presence of packet losses. The proposed method is successful at providing robust coding of CS measurements and outperforms other schemes for the considered test metrics
    • 

    corecore