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Abstract 

Oversampled filter banks can be used to enhance resilience to erasures in com- 
munication systems in much the same way that finite-dimensional frames have 
previously been applied. This paper extends previous finite dimensional treat- 
ments to frames and signals in 1 2 ( 2 )  with frame expansions that can be imple- 
mented efficiently with filter banks. It is shown that tight frames attain best 
performance. In particular, if encoding with a uniform frame, the quantization 
error is minimized if and only if the frame is tight. In case of one erasure and if 
encoding with a strongly uniform frame, tight frames are still optimal. In case 
of more erasures, an expression for the mean square error is given and some 
general considerations are presented. 

I Introduction 
The use of frame expansions in signal processing has recently become quite popular, 
due to resilience to additive noise [4], resilience to quantization [6] and greater freedom 
to capture signal characteristics [l, 21. A frame gives a redundant representation of a 
signal and this redundancy can be exploited in different ways. The authors of [7, 81 
have proposed to use this redundancy as a way to reduce the effect of losses in a 
packet-based communication system. That work deals with finite-dimensional frames 
and finite-dimensional signals. 

In this paper we investigate the more general case of infinite-dimensional signals 
and oversampled filter banks which represent a convenient way to implement an 
important class of frames in l Z ( 2 )  [3, 111. The encoding structure considered in this 
work is depicted in Figure 1: An input sequence 4.1 is fed through an M-channel 
FIR filter bank followed by downsampling by N (N < M ) .  The M output sequences 
are then separately scalar quantized with uniform scalar quantizers and sent over M 
different channels. Each channel either works perfectly or not at all. The decoder 
receives only M - e of the quantized output sequences, where e is the number of 
erasures during the transmission. We assume that there are no more than M - N 
erasures. The reconstruction process is linear. We wish to find filter bank properties 
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piiJ Channel I 

Figure 1: Abstraction of a communication system using an M-channel filter bank 
with downsampling by N .  

Channel 2 

x b l  ___ 

The paper is organized as follows: Section 2 summarizes the main properties of 
frames and oversampled filter banks and establishes the notation. In Section 3 we 
show some examples of oversampled filter banks. In Sections 4 and 5 we analyze the 
effect of quantization and erasures on the MSE. 

+ linear k2n1 
omrmctio 

2 Frame Expansions and Oversampled Filter Banks 
This review of frames and oversampled filter banks is based on [3, 4, 81. For conve- 
nience we start  with the finite-dimensional case, that  is, we consider only frames in 

A family of M vectors CP = {qk}kl E C N  constitutes a frame if for any vector 
C N .  

x E C N  there exist two constants A > 0 and B < 00 such that: 
M 

AlIx112 I llY1I2 = I(x, Vk)l2 i B11x112. 
k=l 

When A = B the frame is tight. A frame is uniform if l l q k l l  = 1 for k = 1, ..., M .  
We will use notation: TF for a tight frame, UF for a uniform frame and UTF for a 
uniform tight frame. 

If we denote vectors as columns then the frame operator F associated with is 
an M x N matrix with the i th row equal to  pa. We then define an output vector 

'The superscript * denotes the Hermitian transpose. 
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with y = F x .  The properties of a frame can be conveniently defined using its frame 
operator F .  For example, a frame is tight if and only if F*F = A I N ,  where IN  
is the N x N identity matrix while a UTF satisfies F'F = $ I N .  \rector x can be 
reconstructed from y using the so called pseudo-inverse: 

Ft = (F*F)- 'F* .  

If we call A, the eigenvalues of F*F,  then: 

1. the sum of the eigenvalues of F*F equals the sum of the lengths of the frame 
M vectors: E,"=, A, = t r ( F * F )  = t r ( F F * )  = E,"=, P;P~ = Ek=l l l ~ k 1 1 ~ ,  

2. for a UF the sum of the eigenvalues equals Ad, 

3. for a TF, F*F has eigenvalue A with multiplicity N ,  

4. for a UTF, F*F has eigenvalue with multiplicity N .  

Consider again the filter bank shown in Figure 1. Call & ( U )  = [H , l (w) ,  f f ,q (w) ,  ... H,N(w)]* 
the polyphase representation of the zth analysis filter where 

Call H ( w )  the corresponding M x N polyphase analysis matrix, which is a matrix 
whose i th  row equals H,*(w). Many properties can be stated easily in terms of this 
matrix: 

Proposition 1 ([3]) A filter bank implements a frame decomposition in 12(2) if and 
only i f  its polyphase analysis matrix is of full rank on the unit circle. 

Proposition 2 ([3]) A filter bank implements a tight frame expunsion in 12(2) if 
and only z f H * ( w ) H ( w )  = AIN.  

Proposition 3 ( [ l o ] )  An A4 x N polyphase matrax H ( w )  represents a tight frame 
if and only if it has the following decomposition: H ( w )  = U(w)F, where U(w)  is an 
M x M paraunitary matrix ( U * ( w ) U ( w )  = I M )  and F is an M x N matrix such that 
F * F  = AIN.  

Moreover, any paraunitary matrix can be decomposed into a sequence of elementary 
matrices such as rotations and delays [lo]. 
The pseudo-inverse is defined as in the finite-dimensional case: 

Ht(w) = (H*(w)H(w)) - 'H*(w) .  (1) 

A frame implemented with filter banks is uniform if Ilhi[n]/I = 1, 
using ParseVal's relation, if $ Jr, E,"=, I H ~ ~ ( w ) I ~ ~ w  = 1, i = 1, ..., M .  
We now introduce a new definition: 

Definition 1 (Strongly uniform frame) A frame expansion in 1 2 ( 2 )  implemented 
by  an M x N polyphase matrix H ( w )  is strongly uniform if: 

a = 1, ..., 111 or, 
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IH,,(w)12 = 1, 2 = 1, ’”, h.l. 
In other words, strongly uniform frame is implemented by a filter bank which is 
uniform for each fixed w. Clearly, strongly uniform frames are a subset of uniform 
frames. However, notice that if F is a frame operator corresponding to a uniform 
frame in C N  and if we assume H(w) = F then the resulting oversampled filter bank is 
strongly uniform. Moreover, notice that a square paraunitary matrix is automatically 
strongly uniform. Further examples of strongly uniform frames will be shown in the 
next section. 

If we call &(U) the spectral eigenvalues of H*(w)H(w), then: 

1. the integral sum of the spectral eigenvalues of H*(w)H(w) equals the sum of 
& s_”, E,”=, X,(w)dw = Ezzl /lhz[n]l12; the filters’ norms: 

2. for a UF, the integral sum of the eigenvalues equals M ;  

3. for a TF, H*(w)H(w) has eigenvalues constant over the unit circle and equal to  
A with multiplicity N :  X,(w) = A,  z = 1, ..., N ;  

4. for a UTF, H*(w)H(u) has eigenvalues constant over the unit circle and equal 
to  $ with multiplicity N .  

3 Examples of Uniform and Strongly Uniform Frames 
Oversampled filter banks are sometimes preferred to classical critically downsampled 
filter banks for their greater design freedom. However, this freedom makes the actual 
design difficult. 

One of the most used families of oversampled filter banks is the nondownsampled 
one. It is obtained by eliminating the downsampling in the filter bank scheme. If the 
analysis and synthesis filters are power complementary (i.e. the synthesis filters are 
the time reversed versions of the analysis ones) then the corresponding frame is tight 
and uniform but not strongly uniform. 

It will be shown in next sections that strongly uniform tight frames constitute an 
important class of frames. We propose the following factorization to design polyphase 
matrices corresponding to  strongly uniform tight frames: 

H(w) = FU(w),  (2) 

where F is a uniform tight frame in CN and U(w) is an N x N paraunitary matrix. 
It is easy to  see that such a polyphase matrix corresponds to  a strongly uniform tight 
frame. 

Note the difference between this factorization and the one in Proposition 3 (H(w) = 
U ( w ) F ) .  The order of the elements is reversed, so in this last factorization, the parau- 
nitary matrix has size M x M ,  while in our factorization it has size N x N ( N  < M ) .  
This is not surprising since the family of polyphase matrices with the factorization 
H(w) = U(w)F  represents the more general class of tight frames and not the restricted 
class of strongly uniform tight frames. 



177 

Although we cannot claim that our factorization includes all possible strongly 
uniform tight frames, we can state the following: 

Theorem 1 Define an equivalence relation b y  bundling a frame (implemented with 
an FIR oversampled filter bank) with all frames that result from rigid rotations of its 
elements as well as negation or shift of some individual ones (i.e. h,[n] + -h,[n - k ]  
k E 2). When M = N + 1, there is a single equivalence class for all strongly uniform 
tight frames. 

Proof: See Appendix A.l .  

Since a UTF F in C N  can be seen as a strongly uniform tight frame in l z ( 2 )  (i.e. 
H ( w )  = F ) ,  Theorem 1 basically says that the factorization in (2) essentially includes 
all the possible strongly uniform tight frames when M = N + 1 (up to a shift or 
negation of some individual elements). 

0 

4 Quantized Oversampled Filter Banks 
In this section we will analyze the effect of quantization on the performance of the 
system. For the moment we assume that there are no erasures during transmission. 
We want the reconstruction operator to be linear, that  is, we want it to be imple- 
mented by a synthesis filter bank. The reconstruction operator that  we will use is the 
pseudo-inverse (1). 

We will assume that the quantization error can be treated as additive white noise 
with variance o2 = A2/12, where A represents the step size of the quantizer and 
each quantizer has the same step size. We further assume that the noisy sequences 
generated by two different channels are independent. This can be expressed as: 

and 
~ [ w i [ n ] w ; [ n  - m]] = 026ij6[m]. (4) 

Under this assumption (input sequences corrupted by additive noise), the pseudo- 
inverse is the best linear reconstruction operator in the mean square sense [4]. More- 
over, it can be shown that the MSE due to  quantization is: 

where Xi(w),  i = 1, .., N denote the spectral eigenvalues of H * ( w ) H ( w ) .  Recall that  
the integral sum of the eigenvalues is constant and if we are encoding with a uniform 
frame, it is equal to M .  Thus, we want to  minimize the MSE given the constraint 
that  the integral sum of the eigenvalues is constant. This occurs when the eigenvalues 
are equal and constant over w which is true if and only if the original frame is tight. 
We can then state the following theorem: 

2Proofs of Theorems 2 and 5 and derivation of (6) are omitted due to the lack of space. 
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Theorem 2 When encoding with a filter bank implementing a uniform frame and 
decoding with the pseudo-inverse under the noise model (3)-(4), the MSE is minimum 
if and only if the frame is tight. Then: 

N 
MSEo = Go2. 

5 Introducing Erasures 
Here we consider the effect of erasures on the structure of the frame and on the MSE. 
We denote by E the index set of erasures and by H E ( w )  the polyphase matrix after 
e = ( E (  erasures. HE(w)  is an ( M  - e )  x N matrix obtained by deleting the E- 
numbered rows from the M x N polyphase matrix H ( w ) .  The first question to be 
answered is under which conditions HE(w) still represents a frame.We then study the 
effect of erasures on the MSE. 

5.1 Effect of Erasures on the Structure of a Frame 
Our aim is to use the pseudo-inverse operator to reconstruct after e erasures. The 
pseudo-inverse matrix is defined only if the matrix HE(w)  is still a frame, that  is, 
if and only if it  is still of full rank on the unit circle. This leads to the following 
definition: 

Definition 2 A n  oversampled filter bank which implements a frame expansion rep- 
resented b y  a polyphase matrix H ( w )  is said to be robust to e = /El erasures i f  and 
only i f  for any index set E of erasures, H E ( w )  is of full rank on the unit circle. 

Let us consider first the case where there is only one erasure. 

Theorem 3 A n  oversampled filter bank which implements a uniform tight frame is 
robust to one erasure if and only if 

.., M ,  for  all w .  
j = 1  

Proof: See Appendix A.2. 
0 

Recall that  by definition a strongly uniform frame is such that: E,”=, IHij(w)I2 = 1 ,  
i = 1, ... M ,  for all w .  Thus, as a consequence of the previous theorem we can state: 

Corollary 1 Any oversampled filter bank which implements a strongly uniform tight 
frame is robust to one erasure. 

The result of Theorem 3 does not reveal anything about the existence of filter banks 
which are robust to more than one erasure. 

In [8], it has been shown that a complex harmonic frame in C N  or a real harmonic 
frame in RN is robust to e erasures ( e  5 M - N ) .  A complex harmonic tight frame 
is given by: 
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where W ,  = ej2?r/M. (A real harmonic tight frame could be defined similarly). The 
following theorem guarantees the existence of a t  least one family of strongly uniform 
tight frames in 1 2 ( 2 )  which are robust to e erasures ( e  5 M - IV): 
Theorem 4 Consider an oversampled filter bank with polyphase analysis matrix G ( w )  = 
FU(w) ,  where F is a complex harmonic frame in C N  or a real harmonic frame 
in  RN and U(w) is an N x N polyphase matrix nonsingular on the unit circle 
(det(U(w)) # 0). This filter bank is robust to e erasures (e 5 hf - N ) .  

Proof: See Appendix A.3. 

If U(w)  is a paraunitary matrix, the resulting oversampled filter bank G (w )  = F U(w) 
represents a strongly uniform tight frame robust to e erasures ( e  5 A4 - N ) .  

U 

5.2 

In the previous section, it has been shown that it is possible to design oversampled 
filter banks which are robust up to A 4  - N erasures. We assume such filter banks for 
the rest of the paper. 

Now, we want to  compute the effect of the erasures on the MSE. Call H(w) the 
polyphase matrix related to the original frame and HE(w) the polyphase matrix after 
e = IEl erasures. The reconstruction uses the dual polyphase matrix H L ( w )  and the 
quantization model is the one proposed in (3)-(4). Under these assumptions the mean 
square error is equivalent to the one determined in (5): 

Effect of Erasures on the MSE 

where Ai(Hk(w)HE(w)), i = 1, ..., N ,  are the spectral eigenvalues of H&(w)HE(w) .  
However, our target is to express the mean square error in terms of the original 

frame and to find properties that the original frame operator has to satisfy to  minimize 
the distortion. Consider first a strongly uniform frame and e = 1: 

Theorem 5 Consider encoding with a strongly uniform frame and decoding with lin- 
ear reconstruction. The MSE averaged over all possible erasures of on,e channel is 
minimum if and only if the original frame is tight. Moreover a tight frame minimizes 
the maximum distortion caused b y  one erasure. The MSE is given by: 

It is not possible to extend the result of this theorem to the case of more than one 
erasure. However, it is possible to compute the M S E  with e > 1 when the original 
frame is strongly uniform and tight: 

MSEE= I + -  dw) MSE,,  ( 27r. ’ -?r Z Z l  M - N p i ( w )  
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where ,ui(w) are the spectral eigenvalues of T * ( w ) T ( w )  and T ( w )  is the N x e  polyphase 
matrix with columns (Hz(w)}iEE. 

Since (6) is similar to ( 5 ) ,  and the spectral sum of the e eigenvalues of T ( w )  is 
constrained to be a constant, the minimum in (6) occiirs when all the eigenvalues are 
equal and constant, which is true when T ( w )  is tight. 

Unfortunately, we cannot guarantee that  for any possible erasure event the matrix 
T ( w )  is tight. 

6 Conclusions 
This work has presented extensions of the problem of quantized frame expansions 
with erasures [7, 81 to the case of oversampled filter banks and infinite-length input 
sequences. I t  has been shown that oversampled filter banks associated with tight 
frames perform the best in this context. Moreover, we presented practical ways to  
design oversampled filter banks robust to one or more than one erasures. 

The design of filters which are optimal in this communication context and which 
show other desirable properties such as good space-frequency localization is under 
investigation. 

A. Appendix 

1. Proof of Theorem 1 
Given a strongly uniform tight frame represented by the polyphase matrix G ( w ) ,  all 
the other polyphase matrices related to the same equivalent class are obtained as 
follows: 

H ( w )  = CG(w)U(w),  (7) 

where u ( w )  is an  N x N  paraunitary matrix, 
I E 2. This equivalence class preserves tightness, uniformity, and also strong unifor- 
mity. Thus, if G ( w )  is strongly uniform and tight, so is H(w). 

Now, let H(w)  be a polyphase matrix associated with a strongly uniform tight 
frame with M = N + 1. It  can be shown that  it consists of the first N columns of a 
scaled A4 x M paraunitary matrix H ( w ) .  Each row (or column) of H ( w )  is of norm ,m that  is: 

= diag(a l ,02,  ....cTM) and cfk = f 

2 = 1 ,2 ,  .., N + 1. N f l  N + 1  

I&, j (W)l2 = 7 
j = 1  

Moreover, since our frame is strongly uniform we have: 

N 

\ H Z , j ( W ) ( 2  = 1 2 = 1,2 ,  .., N + 1. (9) 
j=1 

Subtracting (9) from (8).we obtain: 
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Since H(w) is realized with FIR filters, it is formed only of Laurent polynomial ele- 
ments. This implies that  R i , ~ + l ( w )  must be a monomial : R ~ , N + ~ ( W )  = kN-' /2e- jku 
IC E 2. Without loss of generality we assume that R~,N+I(W) = &N-'/'. That  is, the 
last column of H ( w )  is (,tN-'/', fN-l/', ..., fN-'/') for some choice of signs. 

determines a subspace. Thus the span 
of the other N subspaces (each subspace is related to one of the channels) must be 
the orthogonal complement to this subspace. Since orthonormal bases for a subspace 
are unitarily equivalent, the possible tight frames corresponding to  a single choice 
of signs are in the same equivalence class. Flipping signs yields frames in the same 
equivalence class. 

Any given choice of signs in R ~ , N + ~ ( w )  

2. Proof of Theorem 3 
Assume that the erased channel is H,(w).  Call H,(w) the polyphase matrix after one 
erasure. Then: 

H: (w)H, ( U )  = H' (U) €3 (U) - H, ( U )  H,* (U ) .  - 
H , ( w )  is a frame if and only if H:(w)H,(w) is of full rank on the unit circle. That 
means that (H;(w)H,(w))-' must exist on the unit circle. The identity: 

( A  - BCD)-' = A-' + A- lB(C-l - DA-'B)-lDA-l 

with A = %IN.,  B = H z ( w ) ,  C = 1, and D = H,'(w) yields: 

(Hf(w)H,(w))- '  = $IN + $ l ~ H , ( w )  (1 - H;(w)$INH,(w))- l  H;(w)$IN 

= $ I N  + $ (1 - $H;(w)H,(w))- '  H,(w)H,*(w).  

Thus, the matrix is invertible if and only if  

I - $H;(w)H,(w) # o for all w.  

The desired inequality now follows from the fact that  the frequency response of each 
filter is continuous (since we are only considering FIR filters) and the frame is uni- 
form. The continuity of the filters implies that  IH,,(w)~~ < x, for all w or 
E,"=, IH,,(w)l' > %., for all w ,  but since the frames considered are uniform it must 
be that E,"=, ~ H , , ( w ) \ ~  < x, for all w. 

3. Proof of Theorem 4 
First note that if a finite set of channels has a subset that  is a frame, then the original 
set of channels is also a frame. Thus it suffices to consider subsets with N channels; 
since all of these will be shown to be frames, larger subsets are also frames. 

Let us call GE(w) the N x N polyphase matrix after e erasures (e = M - N). 
GE(w) is a frame if and only if det(GE(w)) # 0 on the unit circle. Now, we know that 
det(FE) # 0 for any subset of e = ( M -  N )  erasures [8] and since: GE(w) = F ~ u ( w ) ,  

det(GE(w)) = det(FE) det(U(w)) # 0 for all w .  
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