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Abstract

In this paper, we propose to use multiple descriptions (MDs) to achieve a high degree of robustness towards random
packet delays and erasures in networked control systems. In particular, we consider the scenario, where a data-rate
limited channel is located between the controller and the plant input. This forward channel also introduces random
delays and dropouts. The feedback channel from the plant output to the controller is assumed noiseless. We show
how to design MDs for packetized predicted control (PPC) in order to enhance the robustness. In the proposed
scheme, a quantized control vector with future tentative control signals is transmitted to the plant at each discrete
time instant. This control vector is then transformed into M redundant descriptions (packets) such that when receiving
any 1 ≤ J ≤ M packets, the current control signal as well as J − 1 future control signals can be reliably reconstructed
at the plant side. For the particular case of LTI plant models and i.i.d. channels, we show that the overall system forms
a Markov jump linear system. We provide conditions for mean square stability and derive upper bounds on the
operational bit rate of the quantizer to guarantee a desired performance level. Simulations reveal that a significant
gain over conventional PPC can be achieved when combining PPC with suitably designed MDs.

Keywords: Quantization, Networked control, Multiple descriptions

1 Introduction
In networked control systems (NCSs), the controller com-
municates with the plant via a general purpose communi-
cation network [1, 2]. When compared to using dedicated
hardwired control networks, the use of general purpose
and possibly wireless communication technology brings
significant benefits in terms of efficiency, interoperability,
deployment costs, etc. However, the use of practical com-
munication technology also leads to new challenges, since
the network needs to be taken into account in the overall
design, see also [1–7].
In this paper, we will focus on the existence of a dig-

ital network between the controller and the plant input.
This network contains either a single channel that intro-
duces i.i.d. packet delays and erasures or multiple inde-
pendent channels with i.i.d. packet delays and erasures.
The channel between the plant output and the controller
is considered ideal, i.e., noiseless and instantaneous. For
example, this could be a situation where the controller
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and plant communicates over wireless channels. The con-
troller could be battery driven and therefore with limited
transmission power. On the other hand, the plant might
not have a limitation on the transmission power. In this
case, the reverse channel from the plant to the con-
troller has a significantly greater SNR than the forward
channel between the controller and the plant. There are
many other practical sitations with wireless controller-
actuator links but direct sensor-controller connections,
e.g., groups of agents/vehicles/robots/drones. Their posi-
tions/formation are sensed via a system comprising a
camera and attached controller. Activation commands are
then sent wirelessly to the agents.
The main contributions of this work is the theoretical

analysis and practical design of the quantized control sig-
nals. In particular, we propose to combine a recent robust
control strategy known as (quantized) packet predictive
control (PPC) [8–11] with a joint source-channel cod-
ing strategy based on multiple description (MD) coding
[12, 13]. We provide computable upper bounds on the
operational bit rate required for coding the quantized con-
trol signals (descriptions) and provide a practical design
based on our theoretical analysis. The simulation study
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shows that the combination of MDs and PPC provides
a significant improvement over PPC in the case of large
packet loss ratios.
In quantized PPC, a control vector with the current

and N − 1 future predicted plant inputs is constructed
at the controller side to compensate for random delays
and packet dropouts in the channel. Thus, in the case of
packet erasures (and if not toomany consecutive dropouts
occur), the buffer will feed the plant with the appropri-
ate future predicted control value [8]. The key principle
of MDs is to encode a source signal into a number of
descriptions (packets) that are transmitted over separate
channels. Each description is able to approximate the
source signal to within a prescribed quality. Moreover, if
several descriptions are received, they can be combined to
further improve the reconstruction quality. Thus, in the
case of packet erasures, it is possible to achieve a graceful
degradation of the reconstruction quality [13].
The design of optimal quantized control strategies sub-

ject to data rate limitations defines a complicated problem
that lies in the intersection of signal processing and con-
trols. In particular, if the quantizers are designed using
conventional open-loop source-coding strategies, it can-
not be guaranteed that the overall system will be stable,
when used in closed-loop control. Indeed, the resulting
data rate could exceed the bandwidth of the digital chan-
nel, the data rate could be too low to capture the plant
uncertainty and thereby not guarantee stability, or the
non-linear effects due to quantization could have a nega-
tive impact on the overall stability when fed back into the
system [8, 9, 14, 15].
The combination of MDs and PPC has to the best of the

authors’ knowledge not been considered before (except
in the conference contributions of the authors [16–18]).
In [16], MDs were used for power control in wireless
sensor networks. The quantizers were designed under
high-resolution assumptions, and no stability assessment
was provided. In [17, 18], the preliminary ideas for the cur-
rent work (without analysis and proofs) were presented.
MDs for state-estimation was considered in [19, 20] under
high-resolution quantization assumptions. The design of
lattice quantizers for PPC withoutMDs was treated in [16,
21] for the cases of entropy-constrained and resolution-
constrained quantization, respectively.
In this work, we will focus on LTI plant models, which

are (possibly) open-loop unstable. Thus, it is necessary to
provide quantized control signals to the plant in a reli-
able way to guarantee stability in the presence of data rate
limitations, random packet delays and erasures. Our key
idea is to design and use MDs in a novel way that dif-
fers from how it is traditionally used. Traditionally, when
the received descriptions are combined at the decoder,
the approximation of a given source signal is improved.
On the other hand, in the proposed work, when the

received descriptions are combined at the decoder, then
rather than improving existing control signals, new future
controls signals are instead recovered.
There exists a vast amount on literature on MJLS with

delays, cf.,[22–25]. In the present work, we show that the
overall system with delays, erasures, quantization effects,
and multiple descriptions, can be cast as a Markov jump
linear system (MJLS), which makes it possible to use
general stability results from the MJLS literature [26, 27].
The paper is organized as follows. Section 2 contains

background information on quantized PPC. Section 3
contains the system analysis of a theoretical joint PPC and
MD scheme. Section 4 presents the design of the com-
bined practical PPC andMD scheme. Section 5 provides a
simulation study of the proposed scheme. Section 6 con-
tains the conclusions. Proofs of lemmas and theorems are
deferred to the appendices.

1.1 Notation
Let S↓ be the down-shift-by-one matrix operator, which
replaces the jth row of anN×Mmatrix by its (j−1)th row
for j = N , . . . , 2. Similarly, define S↑ as the up-shift-by-
one matrix operator. Let ei denote the unit-vector aligned
with the ith axis of the Cartesian coordinate system, e.g.,
e2 =[ 0, 1, 0, · · · , 0]T , where the dimension of ei will be
clear from the context. Let 1i ∈ R

i be the all-ones vec-
tor of dimension i. Let γi be the matrix operator that takes
the ith diagonal of an N × N matrix, where i = 1 is the
main diagonal and i > 1 are diagonals above the main
diagonal. Thus, γi(A) ∈ R

N−i+1 if A ∈ R
N×N . We will use

σr(A) to denote the spectral radius of the matrix A, and
A ⊗ B denotes the usual Kronecker product between the
matrices A and B. The squared and weighted l2-norm of a
vector, say x, is written as ‖x‖2P = xTPx, where P � 0, i.e.,
P is a positive semidefinite matrix.

2 Quantized packetized control over erasure
channels

In this section, we provide a summary of existing results
on quantized PPC and relate them to the present situa-
tion. The system considered is shown in Fig. 1. For a more
detailed presentation of quantized PPC, see [11].

2.1 Systemmodel
We consider the following discrete-time stochastic lin-
ear time invariant (LTI) possibly unstable dynamical plant
with state xt ∈ R

z, z ≥ 1 and scalar input ut ∈ R:

xt+1 = Axt + B1ut + B2wt , t ∈ N. (1)

In (1), wt ∈ R
z′ , z′ ≥ 1, is an unmeasured disturbance,

modeled as an arbitrarily distributed (and with possibly
unbounded support) zero-mean stochastic process with
bounded covariance matrix �w, and B1 ∈ R

z and B2 ∈
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Fig. 1 System setup. The PPC communicates with the plant via a data-rate limited (digital) erasure channel with delays

R
z×z′ . We do not assume that A ∈ R

z×z is stable; how-
ever, we will assume that the pair (A,B1) is stabilizable.
The initial state x0 is arbitrarily distributed with bounded
variance.

2.2 Cost function
In MPC, at each time instant t and for a given plant state
xt , one often uses a linear quadratic cost function on the
form [28]:

V (ū′, xt) � ‖x′
N‖2P +

N−1∑
�=0

(‖x′
�‖2Q + λ(u′

�)
2), (2)

where N ≥ 1 is the horizon length, and the design vari-
ables P � 0, Q � 0 and λ > 0 allow one to trade-off
control performance versus control effort. The variables
x′
� and ū

′
l denote tentative variables and are defined below.

The final state weighting ‖x′
N‖2P in (2) aids in stabiliz-

ing the feedback loop by approximating the effect of the
infinite-horizon behavour [28]. For example, one may
choose P as the unique positive semidefinite solution to
the discrete algebraic Riccati equation:

P = ATPA + Q − ATPB1
(
λ + BT

1 PB1
)−1

BT
1 PA, (3)

which exists if the system (1) is stabilizable [28].
The cost function in (2) examines a prediction of the

plant model over a finite horizon of length N. It is com-
mon to assume that the predicted state trajectories at time
t are independent of the buffer contents at the decoder
(i.e., they are independent of what has been received at
the plant input side), network effects, and the external
disturbances wt , and are generated by

x′
�+1 = Ax′

� + B1u′
�, (4)

x′
0 = xt , while the entries in ū ′ = [

u′
0, . . . ,u′

N−1
]T rep-

resent the associated predicted plant inputs. Thus, the
current control vector

ūt = [ut(1), . . . ,ut(N)]T

contains the control signal ut(1) for the current time
instant t as well as N − 1 future predictive control signals
for time up to t + N − 1.

One may include the effect of the channel delays in the
cost function (2) by, for example, formulating the indi-
vidual stage costs in terms of their expected stage costs,
i.e., weighting by the probabilities of control signals being
delayed:

E

N−1∑
�=1

(‖x′
�‖2Q+λ(u′

�)
2) =

N−1∑
�=1

(‖x′
�‖2Q+λ(u′

�)
2)p�, (5)

where p� denotes the probability of using the control sig-
nal u′

�. Moreover, in this work, we will also model the
effect of the quantizer directly in the design of the control
signal u′

�, see Section 2.4 for details.
Following the ideas underlying PPCs, see, e.g., [29], at

each time instant t, and for current state xt , the controller
sends the entire optimizing sequence, ūt , to the actuator
node. Depending upon future packet dropout scenarios, a
subsequence of ūt will be applied at the plant input, or not.
Following the receding horizon paradigm, at the next time
instant, xt+1 is used to carry out another optimization,
yielding ūt+1, etc.

2.3 Network effects
As illustrated in Fig. 1, we shall assume that the backward
channel of the network is noiseless and instantaneous,
whereas the forward channel is a packet erasure chan-
nel, where packets can be delayed and also be received
out-of-order. In fact, we allow the delay to be unbounded,
which means that packets can be lost. In our setup, if a
transmitted packet has not been received within N con-
secutive time slots, it is considered lost. In MD coding, it
is common to assume the availability of eitherM separate
and independent channels or a single (compound) chan-
nel where the M packets can be sent simultaneously and
yet be subject to independent erasures and delays [13].
Formally, we define τ it ∈ N0 ∪ ∞ to be the delay experi-
enced by the ith packet that is constructed at time t. Thus,
τ it is a property of the ith channel. We will assume that
the delays {τ it } experienced by the different packets are
independent and identically distributed (i.i.d.). With this
notation, we model transmission effects via the discrete
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processes
{
dit,t′

}∞
t′=t

, where 0 ≤ t ≤ t′ and i = 1, . . . ,M,
defined via:

dit,t′ �
{
1, if τ it ≤ t′ − t,
0, else,

where τ it ≤ t′ − t implies that the ith packet constructed
and transmitted at time t has experienced a delay no more
than t′ − t time instances. We note that even though τ it ,∀t,
are mutually independent, the processes dit,t′ are generally
not i.i.d., since if a packet constructed at time t experi-
ences a delay of τ it , then dit,t′ = 1 for all t′ ≥ t + τ it .
However, for t′ = t, the outcomes dit,t , i = 1, . . . ,M, t ≥ 0,
are assumed mutually independent. We will also assume
that the packet reception at time t is conditionally inde-
pendent of the past packet receptions prior to time t −N ,
given the knowledge of the packet reception between time
t and t − N + 1. Specifically, for t′ ≥ t + N ,

Prob
(
dit,t′ = 1|dit,t′−1, d

i
t,t′−2, . . . , d

i
t,t
)

= Prob
(
dit,t′ = 1|dit,t′−1, d

i
t,t′−2, . . . , d

i
t,t′−N+1

)
.

Finally, we assume that the channel statistics are station-
ary so that Prob

(
dit,t′ = 1|dit,t′−1, d

i
t,t′−2, . . . , d

i
t,t′−N+1

)
does not depend upon t. We will make explicit use of the
above stationarity andMarkov assumptions in Lemma 3.2.

2.4 Quantization constraints
We consider a bit-rate limited digital network between
controller output and plant input and all data to be trans-
mitted needs therefore to be quantized. This introduces
a quantization constraint into the problem of minimizing
V (ū ′, xt).
Let Q � diag(Q, . . . ,Q,P) ∈ R

zN×zN and define:

� �

⎡
⎢⎢⎢⎣
B1 0 . . . 0
AB1 B1 . . . 0
...

...
. . .

...
AN−1B1 AN−2B1 . . . B1

⎤
⎥⎥⎥⎦ ∈ R

zN×N , (6)

ϒ �

⎡
⎢⎢⎢⎣
A
A2

...
AN

⎤
⎥⎥⎥⎦ ∈ R

zN×z, (7)

F � ϒTQ� ∈ R
z×N , (8)


 � −�−TFT ∈ R
N×z, (9)

�T� = �TQ� + λI ∈ R
N×N ,

ξt � 
xt ∈ R
N . (10)

Then using the above and (4), the cost function (2) can
be rewritten as

V (ū ′, xt) = xTt ϒTϒxt + ū′�T�ū′ + 2xTt Fū′, (11)

which has the unique (unquantized) minimizer ū∗ given
by

ū∗ = (�T�)−1FTxt (12)
= �−1
xt = �−1ξt ∈ R

N . (13)

We note that � is fixed and we may at this point either
directly quantize ū∗ or instead quantize ξt and then apply
the mapping �−1 in order to obtain the quantized control
vector.1 Since � is invertible, and we are transmitting the
entire quantized control vector, the resulting coding rate
is not affected by this operation [30].
When using entropy-constrained (subtractively)

dithered (lattice) quantization (ECDQ), a dither vector ζt
is added to the input prior to quantization and then sub-
tracted again at the decoder to obtain the reconstruction
[31].2 Specifically, let Q� denote an ECDQ with underly-
ing lattice �. Then the discrete output ξ ′

t of the ECDQ
is given by ξ ′

t = Q�(ξt + ζt). Furthermore, the recon-
struction ξ̂t at the decoder is then obtained by subtracting
the dither, i.e., by forming ξ̂t = ξ ′

t − ζt . Interestingly, this
quantization operation may be exactly modeled by an
additive noise channel, i.e., we have ξ̂t = ξt + nt , where
the noise nt is zero-mean with variance σ 2

n and indepen-
dent of ξt , see [31] for details. With this, the quantized
(and reconstructed) control variable �ut can be written as

�ut = �−1(nt + ξt), (14)

where nt and ξt are mutually independent and ξt = 
xt .
We note that �ut is the quantized (and reconstructed) con-
trol signal, which has been found by using an ECDQ on
ξt . Thus, �ut is a continuous variable whereas ũt = �−1ξ ′

t
is the corresponding discrete valued variable, which is
entropy coded and thereby converted into a bit-stream (to
be transmitted over the network), see Fig. 1. Throughout
this work, we will use ut(i) to refer to the ith element of
the vector �ut .

2.5 MD coding for PPC
We design the MDs by explicitly exploiting the layered
construction of the control signals. In particular, we first
generate a quantized control vector based on the prin-
ciples of PPC. This vector contains the current control
signal and N − 1 future control signals. Then, we con-
struct M descriptions based on this control vector. The
descriptions are constructed so that the current control
signal and J − 1 future control signals can be obtained
by combining any subset of J ∈ {1, . . . ,M} descriptions.
Thus, the more packets that are received at the plant,
the more future plant predictions become available. Note
that on reception of at least one packet out of the M
packets, the current quantized control signal can be com-
pletely recovered at the plant input side. When receiving
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and combining more descriptions, the quality of this con-
trol signal is not improved. Instead new control signals
become available. With this approach, we thus avoid the
issue of having to guarantee stability subject to a proba-
bilistic and time-varying accuracy of the control signals.
Instead, we can use ideas from quantized PPC, when
assessing the stability. A detailed design of the MDs is
provided in Section 4.

3 Theoretical analysis of the PPC-MDC scheme
3.1 Markov jump linear system
Let x̄t ∈ R

zN×1 be the N − 1 past and the present system
state vectors, i.e.,

x̄t �
[
xTt , . . . , xTt+1−N

]T
, (15)

where xt is given by (1), and let n̄t be the N − 1 past and
the present quantization noise vectors, i.e.,

n̄t =
[
nTt , . . . , nTt+1−N

]T ∈ R
N2×1, (16)

where nt is introduced in (14). Moreover, let �t ∈
R
N(z+1)×1 be the augmented state variable given by

�t �
[
x̄t
f̄t−1

]
, (17)

where f̄t =[ ft(1), . . . , ft(N)]T ∈ R
N×1 represents the

buffer with the control signals to be applied by the actu-
ator at the plant input side. This buffer holds the present
and the N − 1 tentative future control values. In particu-
lar, ft(1) is the control value to be applied at current time t,
and ft(i) is to be applied at time t+ i−1. In addition, there
is also a buffer f̄ ′

t at the plant side, which holds all received
packets that are no older than t − N + 1 time instances.
Let �t ∈ R

N×N be an indicator matrix with binary ele-
ments {0, 1} indicating the complete buffer contents of f̄ ′

t
at time t. In particular, if �t has a “1” at entry (i, j), it
shows that at least j packets from time t − i + 1 have
been received and the buffer therefore contains at least
ut−i+1(1),ut−i+1(2), . . . ,ut−i+1(j). If, in addition, entry
(i, j + 1) = 1, it further means that the buffer also con-
tains ut−i+1(j + 1). To better illustrate the relationship
between�t and the buffers f̄ ′

t and f̄t consider the following
example.

Example 3.1. Let N = 3 and assume that f̄ ′
t is empty

and that f̄t is initialized to zero. Moreover, let the three
packets constructed at time t be denoted by st(i), i =
1, . . . , 3. Then at time t, assume that two packets, say st(1)
and st(3), constructed at time t are received, which implies
that ut(1) and ut(2) can be recovered. At time t + 1, a sin-
gle packet, say st+1(1), from time t + 1 is received. Finally,
at time t + 2, the third and remaining packet st(2) from

time t is received. This leads to the following sequence of
variables:

f̄ ′
t = {st(1), st(3)} ⇒ �t =

⎡
⎣ 1 1 0
0 0 0
0 0 0

⎤
⎦

⇒ f̄t =
⎡
⎣ ut(1)
ut(2)
0

⎤
⎦

f̄ ′
t+1 = {st+1(1), st(1), st(3)} ⇒ �t+1 =

⎡
⎣ 1 0 0
1 1 0
0 0 0

⎤
⎦

⇒ f̄t+1 =
⎡
⎣ ut+1(1)

0
0

⎤
⎦

f̄ ′
t+2 = {st+1(1), st(1), st(2), st(3)}

⇒ �t+2 =
⎡
⎣ 0 0 0
1 0 0
1 1 1

⎤
⎦ ⇒ f̄t+2 =

⎡
⎣ ut(3)

0
0

⎤
⎦ .

�

In order to present a formal relationship between �t
and the buffer f̄t , we introduce Ut as the upper triangular
matrix containing the relevant control signals, that is

Ut=

⎡
⎢⎢⎢⎣
ut(1) ut(2) ut(3) · · · ut(N)

0 ut−1(2) ut−1(3) · · · ut−1(N)
... 0

. . .
...

0 0 . . . 0 ut−N+1(N)

⎤
⎥⎥⎥⎦ . (18)

The control signal to be applied at time t is given by one
of the elements on the main diagonal of Ut , and the con-
trol signal to be applied at time t + j is an element on the
jth diagonal above the main diagonal (unless the buffer is
changed in the mean time). Let

γi(Ut) =[ut(i),ut−1(i + 1), · · · ,ut−N+i(N)]T

and let δi � γi(�t). Moreover, let

δ̃i(k) � δi(k)
k−1∏
j=1

(1 − δi(j)),

where δi(k) is the kth element of the vector δi. Thus,
for a given i, at most one element of the vector δ̃i =
[ δ̃i(1), . . . , δ̃i(N − i + 1)]T is 1 and the others are 0. The
control signal to be applied at time t + i− 1 is, thus, given
by δ̃Ti γi(Ut), which could be zero if δ̃i is the all zero vector.
With this notation, it follows that

f̄t(i) = δ̃Ti γi(Ut), i = 1, . . . ,N . (19)

To avoid updating the buffer f̄t with information from
packets that were already received in previous time
instances, it is useful to look only at the changes between
�t and �t−1. Towards that end, let �′

t ∈ {0, 1}N×N be the
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difference indicator matrix that only indicates the packets
that are received at current time t, i.e.,

�′
t = �t − S↓�t−1. (20)

In the following, we will show that the number of dis-
tinct difference indicator matrices is finite for bounded
N, and that the sequence of difference indicator matrices
{�′

t} is stationary Markov and ergodic. These properties
will be helpful in the subsequent analysis.

Lemma 3.1. The number L of distinct difference indica-
tor matrices is upper bounded by:

L ≤ (N + 1)
(
1 + 1

2
N(N + 1)

)N−1
(21)

with equality if N = M, i.e., if the number of packets is
equal to the horizon length. �

Proof. See Appendix 1.

Lemma 3.2. The sequence of difference indicator matri-
ces {�′

t} is stationary Markov and ergodic. �

Proof. See Appendix 2.

Example 3.2. Let us briefly consider the special case
without delays, i.e., where we do not allow for late packet
arrivals but simply discard late packets. Let us assume
that M = N, i.e., the number of packets equals the hori-
zon length. In this case, the difference indicator matrices
�′

t take the form of the all-zero matrix except for the first
row, which has Jt consecutive ones starting at the beginning
of the row. Here Jt denotes the number of packets received
at the current time (excluding any late packets). Thus, the
number of distinct difference indicator matrices reduces to
L = M + 1. Let Jt−1 denote the number of packets received
in the previous time slot. Then the transition probability
pJt |Jt−1 , i.e., the probability of receiving Jt packets condi-
tioned upon receiving Jt−1 packets in the previous time slot
does not depend upon Jt−1. Indeed, in this particular case:

pJt |Jt−1 =
(
N
Jt

)
(1 − p)Jt pN−Jt , Jt = 0, . . . ,N . (22)

�

We are now in a position to introduce the main techni-
cal result of this section, which shows that the sequence of
augmented state variables {�t} in (17) and the sequence
of difference indicator matrices {�′

t} in (20) are jointly
Markovian and form a Markov jump linear system.

Theorem 3.1. Let νt = [
wT
t , n̄Tt

]T be the vector con-
taining the external disturbances and quantization noises.
Moreover, let δ′

i � γi(�′
t) ∈ R

N−i+1 and let

δ̃′
i(k) � δ′

i(k)
k−1∏
j=1

(1 − δ′
i(j)),

where δ′
i(k) is the kth element of the vector δ′

i . Then,{�t ,�′
t} forms a Markov jump linear system with a state

recursion that can be written in the following form:

�t+1 = A(�′
t)�t + B(�′

t)νt , (23)

where the two switching matrices

A(�′
t) �

[
A1(�′

t) A2(�′
t)

A3(�′
t) A4(�′

t)

]
∈ R

(zN+N)×(zN+N)

and

B(�′
t) �

[
B1(�′

t) B2(�′
t)

B3(�′
t) B4(�′

t)

]
∈ R

(zN+N)×(z′+N2)

are given by:

A1(�
′
t) =

[
A 0z×z(N−1)

0z(N−1)×z 0z(N−1)×z(N−1)

]

+
[

B1δ̃
′T
1 E1

0z(N−1)×zN

]
∈ R

zN×zN (24)

A2(�
′
t) =

[
B1

(
1 − 1TN δ̃′

1

)
eT1 S↑

0z(N−1)×N

]
∈ R

zN×N (25)

A3(�
′
t) =

⎡
⎢⎢⎢⎣

δ̃′T
1 E1

δ̃′T
2 E2 0
...

δ̃′T
N EN 0 · · · 0

⎤
⎥⎥⎥⎦ ∈ R

N×zN (26)

A4(�
′
t) =

⎡
⎢⎢⎢⎣

(
1 − 1TN δ̃′

1

)
eT1

...(
1 − 1T1 δ̃′

N

)
eTN

⎤
⎥⎥⎥⎦ S↑ ∈ R

N×N (27)

and

B1(�
′
t) =

[
B2

0z(N−1)×z′

]
∈ R

zN×z′ (28)

B2(�
′
t) =

[
B1δ̃

′T
1 E′

1
0z(N−1)×N2

]
∈ R

zN×N2
(29)

B3(�
′
t) = 0N×z′ (30)

B4(�
′
t) =

⎡
⎢⎢⎢⎣

δ̃′T
1 E′

1
δ̃′T
2 E′

2 0
...

δ̃′T
N E′

N 0 · · · 0

⎤
⎥⎥⎥⎦ ∈ R

N×N2
, (31)
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where Ei ∈ R
(N−i+1)×(N−i+1)z and E′

i ∈
R

(N−i+1)×(N−i+1)N are given by

Ei =

⎡
⎢⎢⎢⎣
eTi �−1


eTi+1�
−1


. . .
eTN�−1


⎤
⎥⎥⎥⎦ (32)

E′
i =

⎡
⎢⎢⎢⎣
eTi �−1

eTi+1�
−1

. . .
eTN�−1

⎤
⎥⎥⎥⎦ . (33)

�

Proof. See Appendix 3.

3.2 Stability and steady state system analysis
At time step t+1, the switching variable jumps from some
particular state, say �′

t = � to some state, say �′
t+1 = �̃,

where it is possible that � = �̃. Let the number of dis-
tinct states be L, see Lemma 3.1. Thus, without loss of
generality, we can enumerate the L (not necessarily dis-
tinct) pairs of systemmatrices that are associated with the
L states by {(A(1),B(1)), (A(2),B(2)), · · · , (A(L),B(L))}.
We note that even though some of the system matri-
ces might be identical, there is a bijection between
the state � and the index i of the pair of system
matrices. Let pi|j = Prob(�′

t = i|�′
t−1 = j), i.e.,

the transition probability due to jumping from state j
to state i, where we note that pi|j is independent of
t due to stationarity of the switching sequence, see
Lemma 3.2.
In order to assess the stability of the MJLS in (23) and

find its stationary first- and second-order moments, we
will first introduce some new notation and then directly
invoke Proposition 3.37 in [27], which we for complete-
ness3 include as Lemma 3.3 below.
Define A andB as in (34) and (35), respectively.

A =

⎡
⎢⎢⎢⎢⎣
p1|1A(1) ⊗ A(1) p1|2A(2) ⊗ A(2) · · · p1|LA(L) ⊗ A(L)

p2|1A(1) ⊗ A(1) p2|2A(2) ⊗ A(2) · · · p2|LA(L) ⊗ A(L)

...
. . .

...
pL|1A(1) ⊗ A(1) pL|2A(2) ⊗ A(2) · · · pL|LA(L) ⊗ A(L)

⎤
⎥⎥⎥⎥⎦ .

(34)

B =

⎡
⎢⎢⎢⎣
p1|1A(1) p1|2A(2) · · · p1|LA(L)

p2|1A(1) p2|2A(2) · · · p2|LA(L)
...

. . .
pL|1A(1) pL|2A(2) · · · pL|LA(L)

⎤
⎥⎥⎥⎦ . (35)

Moreover, let q = [q1, . . . , qL]� (I − B)−1ψ , ψ �
[ψ1, . . . ,ψL], where

ψj �
L∑

i=1
pj|iB(i)γ πi, (36)

where γ = limt→∞ E[ νt] and πi are the state priors.
Define the operators φ and φ̂ as follows:

φ(Vi) �

⎡
⎢⎢⎢⎣
v̄i,1
v̄i,2
...

v̄i,L

⎤
⎥⎥⎥⎦ , φ̂(V ) �

⎡
⎢⎢⎢⎣

φ(V1)
φ(V2)

...
φ(VL)

⎤
⎥⎥⎥⎦ , (37)

where v̄i,j ∈ R
m, Vi = [ v̄i,1, . . . , v̄i,L] and V = [V1, . . . ,VL].

Then define

Q � φ̂−1((I − A)−1φ̂(R(q))), (38)

where

R(q) �[R1(q), . . . ,RL(q)] , (39)

Rj(q) �
L∑

i=1
pj|i(B(i)WB(i)∗πi

+ A(i)qiγ ∗B(i)∗ + B(i)γ q∗
i A(i)∗), (40)

where

W = lim
t→∞E[νtνTt ]

= diag
(
�w, σ 2

n , . . . , σ 2
n
) ∈ R

(z′+N2)×(z′+N2).

Definition 3.1 (Definitions 3.8 and 3.32 in [27]). The
MJLS in (23) is mean square stable (MSS) if and only if for
any initial condition (�0,�′

0) and ergodic Markov jump
sequence {�′

t}, there exists μ� and �� such that

‖E[�t]−μ�‖2 → 0 as t → ∞, (41)
‖E[�t�

T
t ]−��‖2 → 0 as t → ∞. (42)

Lemma 3.3 (Proposition 3.37 in [27]). If σr(A) < 1, then
the system in (23) is MSS.

Remark 1. Lemma 3.3 shows that there is an upper
limit on the spectral radius of the matrix A given by (34)
above which the system cannot be stabilized. This matrix
A depends on the packet loss rates via pi|j and on the delays
via the different switching matricesA(i), i = 1, . . . , L.

The MJLS in (23) is in general not stationary. However,
as can be observed from Definition 3.1, if the system is
MSS then asymptotically as t → ∞, its first- and second-
order moments do not depend on t. This observation is
formalized in ([27] Theorem 3.33), which we include in
part below.
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Theorem 3.2 ([27] Theorem 3.33). If the MJLS in (23)
is MSS, then it is also asymptotically wide sense stationary
(AWSS) and vice versa.

Lemma 3.4 (Proposition 3.37 in [27]). If the MJLS is
AWSS, then its first- and second-order asymptotically sta-
tionary (non-centralized) moments are given by:

μ� � lim
t→∞E[�t] =

L∑
i=1

qi, (43)

�� � lim
t→∞E[�t�

T
t ] =

L∑
i=1

Qi. (44)

�

In our case, we note that γ = 0 since the external dis-
turbance wt and the quantization noise nt both are zero
mean. This implies that qi = 0,∀i, in (43).

3.3 Assessing the coding rate of the quantizer
Recall from Section 2.4 that the quantized control vector
ũt is obtained by quantizing ξt to get the quantized vec-
tor ξ ′

t and then using ũt = �−1ξ ′
t . The following result

establishes an upper bound on the bit rate required for
transmitting ξ ′

t .

Theorem 3.3. Let the system (23) be AWSS. Then, for a
given horizon length N, the total coding rate using M =
N descriptions of the quantized control vector ũt , can be
upper bounded by Ru:

Ru � N
2
log2

( N∏
i=1

(
1 +

σ 2
ξ̄ (i)|ξ̄ (1),··· ,ξ̄ (i−1)

σ 2
n

) 1
i
)

+ N
2
log2

(
πe
6

)
+ 1, (45)

where σ 2
ξ̄ (i)|ξ̄ (1),··· ,ξ̄ (i−1) denotes the conditional variance of

ξ̄ (i) given (ξ̄ (1), · · · , ξ̄ (i − 1)), and where ξ̄ denotes Gaus-
sian random variables with the same first- and second-
order moments as the asymptotically stationary moments
of ξt .

Proof. See Appendix 4.

Remark 2. It is straight-forward to extend Theorem 3.3
to the case of M ≤ N descriptions by considering M
(instead of N) subsets of the vector ξt . For example,
if N = 4 and M = 3, one could make the split
{ξ ′

t (1), ξ ′
t (2), (ξ ′

t (3), ξ ′
t (4))}, where upon receiving a sin-

gle description only ξ ′
t (1) is recovered, receiving any two

descriptions makes it possible to recover ξ ′
t (1) and ξ ′

t (2),
and receiving all M = 3 descriptions, the entire vector
ξ ′
t (1), . . . , ξ ′

t (4) is recovered. �

Remark 3. In (45), the conditional variances can easily
be obtained using Schur’s complement on the covariance
matrix �ξ of ξ , which is implicitly given via �� in (44)
using (10), that is

�ξ =[
 0]��[
 0]T . (46)

This makes the upper bound on the bit rate in (45) com-
putable and thereby relevant from a practical perspective.
Indeed, we show in the simulation study in Section 5, that
the bound in (45) is very close to (only 1 bit above) the
resulting operational bit rate.4 �

4 Practical design of the PPC-MDC scheme
In this section, we design a scheme that satisfies the theo-
retical analysis provided in the previous section. We first
present the idea behind our design of MDs and then show
the connection to PPC that was sketched in Section 2.5.
The proposed scheme is illustrated in Fig. 2.
There are many ways to design MD coding schemes, for

example, by use of lattice quantization and index assign-
ment techniques [32, 33], frame expansions followed by
quantization [34], oversampling and delta-sigma quanti-
zation [35], or layered source coding followed by unequal
error protection [36, 37]. In this work, we will be using
the latter technique, where the source is decomposed into
a number of layers and encoded in such a way that upon
reception of say k descriptions, all layers up till the kth
layer are revealed [36]. In particular, we rely on a com-
mon practical implementation of this strategy, which is
based on conventional forward error correction (FEC)

Fig. 2 The proposed combined PPC and MD scheme. The PPC-MDC (controller-encoder) communicates with the plant via multiple independent
data-rate limited (digital) erasure channels with delays. The received descriptions are decoded and combined in the buffer
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codes that are applied on the individual source layers [37].
It will be shown that there exists a natural connection
between PPC and MD based on FEC codes, in the sense
that a quantized control vector ũt with N − 1 future pre-
dictions, can be split intoM ≤ N “layers”, where each layer
contains at least one control value. Then, based on these
M “layers”, we construct M packets st(i), i = 1, . . . ,M,
so that upon reception of any k ≤ M packets, the con-
trol signals ũt(1), . . . , ũt(k) can be exactly obtained at the
decoder. Thus, as more packets are received, more infor-
mation about future predicted control signals will become
available at the plant input side.

4.1 Forward error correction codes
Consider an (n, k)-erasure code, which as input takes k
symbols ykt = (yt(1), . . . , yt(k)) and outputs n symbols
ỹnt = (ỹt(1), . . . , ỹt(n)), where n ≥ k, and where yt , ỹt
belong to some (yet to be specified) discrete alphabets.
With an (n, k)-erasure code, the original k input symbols
can be completely recovered using any subset of at least
k output symbols. For example, a (3, 2)-erasure code may
be constructed by letting ỹt(1) = yt(1), ỹt(2) = yt(2), and
ỹt(3) = yt(1)XORyt(2), where the XOR operation is per-
formed on, e.g., the binary expansions of yt(1) and yt(2).
Thus, using any two ỹt(i), ỹt(j), i �= j both yt(1) and yt(2)
may be perfectly recovered. This principle extends to any
n > k by using, e.g., erasure codes that are maximum
distance separable cf. [38].

4.2 Combining PPC- and FEC-based MDs
For the NCS studied, we apply a sequence of erasure codes
on the quantized control vector ũt = (ũt(1), . . . , ũt(N))

in order to obtainM packets. This process is illustrated in
Fig. 3 and described in detail below. We first split ũt into
M subsets. For example, if M = N , the kth set consists of
the kth control signal (i.e., ũt(k)). In general, we allow sev-
eral control signals within the same set so thatM < N . To
simplify the exposition and without loss of generality, we
will in the following assume that M = N . Due to quanti-
zation, each distinct ũt(k) can be mapped (entropy coded)
to a unique bit stream (codeword), say bt(k). The bit-
stream is then split into k non-overlapping sub-bitstreams
b(i)
t (k), i = 1, . . . , k of equal length.5 These k bitstreams

(whose union yields bt(k)) are now considered as input to
an (M, k)-erasure code, whose M outputs are denoted by
φ

(i)
t (k), i = 1, . . . ,M. To summarize, ũt(1) is first mapped

to bits bt(1) and then an (M, 1)-erasure code is applied,

which outputsM symbols φ
(i)
t (1), i = 1, . . . ,M. Then, the

second control signal ũt(2) is mapped to bt(2). Hereafter,
bt(2) is split into two bitstreams b(1)

t (2) and b(2)
t (1) and an

(M, 2)-erasure code is applied, which outputs φ
(i)
t (2), i =

1, . . . ,M. This process is repeated for all the M control
signals.
The M packets st(i), i = 1, . . . ,M, to be sent over the

network at time t are then finally constructed as:

st(i) = (φ
(i)
t (1),φ(i)

t (2), . . . ,φ(i)
t (M)), i = 1, . . . ,M.

To further illustrate the usefulness of the above
approach, consider the case where M = 5 and where
the decoder receives three packets say st(2), st(3), and
st(5). Then from say st(2), we first recover φ

(2)
t (1), which

is in fact identical to ũt(1). Then, from say st(2) and
st(3), we then recover φ

(2)
t (2) and φ

(3)
t (2) from which we

can decode ũt(2). Finally, using all three received pack-
ets, we recover φ

(2)
t (3),φ(3)

t (3), and φ
(5)
t (3), which can be

uniquely decoded to obtain ũt(3).
The foregoing discussion shows that the presence of

packet dropouts together with the use of MDs makes the
length of the received control packets stochastic and time-
varying, while the prediction horizon N is fixed. This
aspect makes the analysis of the resultant NCS signifi-
cantly more involved than that of earlier PPC schemes,
as presented in [11]. For example, the number of switch-
ing states L, as given by Lemma 3.1, grows exponentially
in the horizon length N, whereas in [11] it was enough
to consider only two states irrespective of the horizon
length.

4.3 Buffering and reconstruction of control signals
At time t, the buffer at the plant input side contains all
received packets, which are not older than t − N + 1.
These will be used for obtaining the current control signal
ût giving preference to newer data. For example, assume
the buffer is initially empty. Then, for the case of M =
N = 3, if we at time t receive st(2), then clearly we obtain
ût = ut(1). If we then at time t + 1 receive st+1(1) and the
delayed packet st(3) then we should form ût+1 = ut+1(1)
from st+1(1) and, thus, simply ignore st(3). However, if we
now at time t + 2, only receive the very late st(1), then
we recover ût+2 = ut(3). Thus, we use the older pack-
ets to obtain the control signal. This process is clarified in
Table 1 forM = N = 3.

Fig. 3MPC control vector conversion into MDs. The kth control signal at time t is mapped intoM output symbols
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Table 1 Control value ût at time t from available buffer contents

ût st(1) st(2) st(3) st−1(1) st−1(2) st−1(3) st−2(1) st−2(2) st−2(3)

ut(1) 1 x x x x x x x x

ut(1) x 1 x x x x x x x

ut(1) x x 1 x x x x x x

ut−1(2) 0 0 0 1 1 x x x x

ut−1(2) 0 0 0 1 x 1 x x x

ut−1(2) 0 0 0 x 1 1 x x x

ut−2(3) 0 0 0 x 0 0 1 1 1

ut−2(3) 0 0 0 0 x 0 1 1 1

ut−2(3) 0 0 0 0 0 x 1 1 1

“1” indicates that the packet is in the buffer and “0” indicates that it is not. “x” indicates that the control value does not depend on the given packet. In all other cases, we set
ût = 0

4.4 Quantization and coding rates
In order to construct the MDs, we need to split the
quantized control vector into individual components. It
is therefore not possible to directly quantize the vec-
tor ξt by use of vector quantization as we have done in
our previous work on NCS [11], which did not include
the use of MDs. Instead, we will in this work use a
scalar quantizer separately along each dimension of the
vector ξt . Of course, a scalar quantizer is not as effi-
cient as a vector quantizer, but the gap from optimality,
which is given byN/2 log2(πe/6), is included in the upper
bound in (52). Interestingly enough, we can still do vec-
tor entropy coding by making use of conditional entropy
coding. In particular, we first entropy code the first ele-
ment of the quantized control vector, i.e., ũt(1). This
results in an average discrete entropy ofH(ũt(1)|ζt). Next,
we conditional entropy code the second element ũt(2),
which results in an average entropy of H(ũt(2)|ũt(1), ζt).
This procedure is repeated for the entire vector ũt .
The FEC code is now applied on outputs of the condi-
tional entropy coders following the approach described in
Section 4.2.
As pointed out in Section 2.4, we transmit the elements

of ũt and not those of ξ ′
t . The reason for this is that if we

receive ξ ′
t (1) for the case of N > 1, then we are actually

not able to reconstruct ũt(1), since ũt = �−1ξ ′
t . Thus,

ũt(1) depends upon the whole vector ξ ′
t and not just the

first element. Since �−1 is fixed and full rank, it simply
maps elements one from discrete set into another discrete
set. Thus, the coding rate is not affected by sending ũt(i)
instead of ξ ′

t (i).
The size R (in bits) of a single packet is then on average

given by:

R = H(ũt(1)|ζt) + 1
2
H(ũt(2)|ũt(1), ζt) + · · ·

+ 1
M

H(ũt(N)|ũt(1), . . . , ũt(N − 1), ζt). (47)

Since we have M of these packets, i.e., we have M
descriptions, the resulting coding rate is RM.

5 Simulation study
We will now use the analysis and design presented in
Sections 3 and 4 in a simulation study in MATLAB.6

5.1 System setup
In the state recursion given in (1), we let z = 5 and
randomly select the system matrix A ∈ R

z×z to be

A=

⎡
⎢⎢⎢⎢⎣

−0.1065 −0.4330 −0.0006 −0.8232 −0.9397
−1.0164 −1.0668 −0.1995 0.1945 −0.8169
−1.3309 0.8582 0.3173 −1.0053 −0.3214
−0.5629 −0.5697 −0.2112 −0.2778 0.1390
0.2247 −0.0090 −1.3312 −0.7531 −0.0929

⎤
⎥⎥⎥⎥⎦ ,

where the absolute values of the eigenvalues of A are
{1.9829, 1.2265, 1.2265, 0.9455, 0.9455}. Thus, the system
is open-loop unstable. We let the external disturbance
wt ∈ R

2 in (1) be Gaussian distributed with zero mean
and covariance matrix�w = I2, where I2 denotes the 2×2
identity matrix. The remaining constants in (1) are set to
B1 = 1z and B2 =[B1,B1]. In these simulations, we have
used T = 4 × 106 vectors each of dimension z = 5 in
the sequence {xt}Tt=0 in (1). x0 is initialized to the zero
vector.

5.2 Cost function
For the cost function in (2), we let Q = I5, λ = 1/20, and
P is found by (3) and given by:

P =⎡
⎢⎢⎢⎢⎣

259.5872 −100.8986 −76.8526 −63.0725 −59.5344
−100.8986 46.9687 40.4038 15.9182 15.0465
−76.8526 40.4038 73.9883 −10.3694 −32.3071
−63.0725 15.9182 −10.3694 34.9787 42.6824
−59.5344 15.0465 −32.3071 42.6824 68.9741

⎤
⎥⎥⎥⎥⎦ .
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5.3 Horizon length and number of packets
We consider the cases where N = 1, 2, 3 and compare
the proposed scheme that includes multiple descriptions,
with the same scheme without multiple descriptions, i.e.,
that of our earlier work [11]. The two schemes are here-
after referred to as PPC-MDC and PPC, respectively. For
the case of PPC-MDC, we let the number of packets M
be equal to the horizon length N. For the case of PPC, the
entire N-horizon vector is encoded into a single packet.
For the case of N = 1, the two schemes are identical.

5.4 Network
To simplify the simulations and to be able to compare
to existing works on PPC, we will not consider delayed
or out-of-order packets. Specifically, if at time t, packet
st−�, � > 0 is received, it is discarded. This means that for
the case ofN = M = 3, the number of jump states reduces
to L = 4 instead of L = 196 as given by Lemma 3.1. Note
that even though we do not consider late packet arrivals,
control signals can still be applied out of order. To see
this, assume that M = N = 3, and that all three packets
{st(1), st(2), st(3)} are received at time t. Then, at time t+1,
a single packet is received, say st+1(1), and at time t + 2
no packets are received. Then, the control signal ut+1(1)
applied at time t + 1 is constructed later than the control
signal ut(3) to be applied at time t + 2.
We let the packet losses be mutually independent and

identically distributed with probability p that a packet is
lost (erased). For this case, the state transition probabili-
ties are given by (22).

5.5 Stability
To assess the stability of the system, we need to compute
the spectral radius σr(A) of A in (34). In order to com-
pute A we simply insert the above presented system and
network parameters into (24) – (27) and (34). We then
obtain the spectral radius by using MATLAB to find the
eigenvalue of A with the largest absolute value. For the
case of N = 1, 2, 3, we have in Fig. 4 shown the spectral
radius σr(A) as a function of the packet loss probability
p ∈ [0, 0.5]. According to Lemma 3.3, theMJLS isMSS and
AWSS if σr(A) < 1. As can be observed from Fig. 4, the
MJLS is guaranteed to be MSS for p < 0.06, p < 0.3, and
p < 0.5 for the cases of N = 1,N = 2, and N = 3, respec-
tively. Thus, choosing a larger horizon brings stability
benefits.

5.6 Quantization
Each scalar control value in the control vector ūt is quan-
tized using a uniform scalar quantizer with some step size
δ. Specifically, for the case of PPC, we simply keep the step
size fixed at δ = 10. On the other hand, for the case of
PPC-MDC, we need to use a larger step than what is used
for PPC, since PPC-MDC introduces redundancy across
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Fig. 4 Spectral radius. Spectral radius σr(A) of A in (34) for N = 1, 2, 3
and as a function of the packet loss probability p ∈ [ 0, 0.5]

the M = N descriptions. Thus, to keep the bit rate from
growing too much as a function of N, we have experimen-
tally found that δ = 25N2 to be a suitable choice, i.e.,
δ = 25, 100, 225, for N = 1, 2, 3, respectively.

5.7 Bit-rates
In order to compute the upper bound (45) on the
bit-rate, we need to estimate the conditional variances
σ 2

ξ̄ (i)|ξ̄ (1),··· ,ξ̄ (i−1) for i = 1, . . . ,N , and the quantization
noise variance σ 2

n . To find σ 2
ξ̄ (i)|ξ̄ (1),··· ,ξ̄ (i−1), we first find

�� in (44) by use of (34) – (40). Then, we use (46) to obtain
�ξ from ��, where �ξ is the steady state covariance
matrix of ξt . Finally, we simply use the Schur complement
[39] of �ξ to obtain the desired conditional variances. To
estimate the quantization noise variance σ 2

n , we use the
relationship σ 2

n ≈ δ2/12, which is exact for a dithered
uniform quantizer and a good approximation for a
non-dithered scalar uniform quantizer. We have plotted
the theoretical upper bound (45) in Fig. 5 as a function of
the packet loss probability and for N = 1, 2, 3.
To estimate the bit-rate of the quantized control

signals, we use (47), which require the computa-
tions of discrete conditional entropies. To estimate
these conditional entropies, we use a histogram-based
entropy estimation on the sequence of discrete (quan-
tized) control signals {ũt}Tt=0. Specifically, we first esti-
mate H(ũt(1)) directly from {ũt(1)}Tt=0. Then, we esti-
mate H(ũt(1), ũt(2)) from {ũt(1), ũt(2)}Tt=0 and use that
H(ũt(2)|ũt(1)) = H(ũt(1), ũt(2)) − H(ũt(1)). We obtain
H(ũt(3)|ũt(1), ũt(2)) = H(ũt) − H(ũt(1), ũt(2)) in a
similar way. Finally, these estimates of the conditional
entropies are inserted into (47) in order to approximate
the resulting operational bit-rate R. The resulting total dis-
crete entropy RT = RM obtained by adding the entropies
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Fig. 5 Average entropy. Average entropy as a function of the packet
loss probability

of the M descriptions is shown in Fig. 5 as a function of
the packet loss rate andM = N .
It may be noticed in Fig. 5 that the upper bound (45) is

approximately 1 bit above the estimate RT of the opera-
tional bit-rates except in the region, where the packet loss
rates approach and exceed the critical point, where the
system becomes unstable. This excess 1 bit accounts for
the theoretical loss of an entropy coder.While we have not
applied actual entropy coding, it is well known that the
loss of the entropy coder diminishes at moderate to large
bit rates.
Note that the multiple descriptions of PPC-MDC have a

certain amount of controlled redundancy, and one might
therefore expect that the total coding rate for all M = N
descriptions would be much greater than what is used for
the single description in PPC. However, due to being a
closed-loop system, packet losses affect the variance of the
input to the quantizer. Consequently, the resulting coding
rate for PPC as well as for PPC-MDC also depend upon
the packet loss rate.

5.8 Performance
Wehavemeasured the performance of the system in terms
of the average state power 1

T
∑T

t=1 ‖xt‖22. This is shown
in Fig. 6. For smaller packet loss rates, the performance
of PPC is better than that of PPC-MDC for N > 1. This
is because the negative impact on the performance due
to quantization in PPC-MDC out-weights the impact due
to using future predicted control values in PPC in case of
packet losses. Recall that the quantizer in PPC-MDC is
coarser than that used in PPC. When the packet loss rate
is increased, PPC-MDC is often able to apply the most
recent control value ũt(1) due to the construction of the
MDs. On the other hand, PPC will frequently be applying
the future predicted control values ũt(2) and ũt(3) due the

Fig. 6 Average state power. Average state power as a function of the
packet loss probability

packet dropouts. This leads to a significant performance
gain of PPC-MDC at higher packet loss rates.

5.9 Complexity
From the analysis of the MJLS in Section 3, it is not easy
to assess the computational burden required, when using
the proposed system in practice. In this section, we pro-
vide a brief overview of the complexity of the encoder and
decoder. The encoder includes the controller, quantizer,
entropy coder, and channel (FEC) coder. The decoder
includes channel decoder, entropy decoder, buffering, and
selection of the control values:

Encoder

1. At any given time, say t, the control vector ūt is
constructed as in (10) and (13), which amount to a
few matrix vector multiplications. The matrices in
question are 
 ∈ R

N×z and � ∈ R
N×N , where N is

the horizon length and z is the state dimension. For
many applications, both the horizon length and the
state dimension are moderately small.

2. Each scalar element in either the control vector
ūt ∈ R

N or in ξt ∈ R
N is quantized using a scalar

quantizer as described in Section 5.6. This amounts
to N simple rounding operations, which can be done
efficiently in hardware.

3. The quantized elements are entropy encoded either
independently, conditionally, or jointly. In either
case, it is done in practice by look-up tables and is
therefore of low complexity, i.e.,O(N).

4. The resulting bitstream after entropy coding is
converted into M packets by applying M FEC codes,
which amounts to matrix-vector multiplications over
finite fields [40]. If we useM = N packets, and
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thereby split the control vector into N “layers”, then
the i th layer uses i × N multiplications due to the
(N , i) FEC code. Thus, the total number of
multiplications is N × (1 + 2 + · · · + N) = O(N3).

Decoder

1. At the decoder at time t, all received packets that are
no older than time t − N + 1, are stored in a buffer.
Moreover, all decoded control values that are no
older than time t − N + 1 time delays are stored in
another buffer. Thus, since there can beM ≤ N
packets in each time slot, the storage complexity is
O(MN).

2. Decoding of received packets involves decoding the
FEC code and decoding the entropy code. Decoding
the FEC code can be done by, e.g., Gaussian
elimination, which has complexityO(N3) per layer,
and therefore at mostO(N4) for decoding the entire
control vector. Decoding of the entropy code is done
by a look-up table and has, thus, complexityO(N),
since the control vector contains N elements.

3. If the decoded control signals are stored in Ut (18),
then the selection of the control signal from the
buffer can be done as suggested in (19). This
includes construction of the vector δ̃i in addition to
forming the inner product of δ̃i and the diagonal of
Ut indexed by γi. The inner product has complexity
O(N).

6 Conclusions
Wehave shown how to combinemultiple description cod-
ing with quantized packetized predictive control, in order
to get a high degree of robustness towards packet delays
and erasures in network control systems. We focused on
a digital network located between the controller and the
plant input. In our scheme, when any single packet is
received, the most recent control value becomes avail-
able at the plant input. Moreover, when any J out of M
packets are received, the most recent control value and
J − 1 future predicted control values become available at
the plant input. These future-predicted control values can
then be applied at time instances, where no packets are
received. The key motivation for this design was twofold.
From a practical point of view, it was shown that a signif-
icant gain over existing packetized predictive control was
possible in the range of large packet loss rates. Moreover,
from a theoretical point of view, computable guarantees
for stability and upper bounds on the operational bit rate
could be established. Indeed, a simulation study revealed
that the upper bounds on the bit rate was a good indica-
tor for the operational bit rate of the system in the range
of packet loss probabilities that were not too close to the
region of system instability.

Future works could include source coding in the feed-
back channel as well as the forward channel, which is
a non-trivial extension. Indeed, the design and analysis
of optimal joint controller, encoders, and decoders in
both forward and backward channels is an open problem
even in the absence of erasures and delays. The main
difficulty is that the design of the source coder in the for-
ward channel hinges heavily on the design of the source
coder in the backward channel as well as on the con-
troller. Another interesting open research direction is to
establish lower bounds on the bit rates, which will then
make it possible to assess the optimality of the overall
system architecture from an information theoretic point
of view.

Endnotes
1For the case of quantized MPC with fixed-rate

quantization and without dithering, it was shown in [41],
that the optimal quantized control vector is given by
nearest neighbour quantization of ξt in (10).

2It follows that we require the dither sequence to be
known both at the encoder and at the decoder.

3We will explicitly make use of (34) – (40) and
Lemma 3.3, when assessing the stability of the system in
the simulation study in Section 5.

4The excess 1 bit is due to the conservative estimate of
the loss of the entropy coder, which is characterized by 1
bit.

5If they are not of equal length, it is always possible to
augment one of the sub-bitstreams with a fixed (known)
bit pattern to make them of equal length.

6Matlab code to reproduce all results (figures and
tables) will be made available online on the authors
webpage.

7Of course, information about what time instances the
packets were received can be learned from past �’s. How-
ever, we are not exploiting this knowledge here.

Appendix 1: Proof of Lemma 3.1
Let us first consider the case M = N . In this case, each
row of �t can take on N + 1 distinct patterns, i.e.,

m︷ ︸︸ ︷
[ 1 · · · 1

N−m︷ ︸︸ ︷
0 · · · 0] , m = 0, . . . ,N ,

wherem describes the number of packets received for the
time slot corresponding to that particular row. The first
row of �′

t is equivalent to the first row of �t . The remain-
ing rows of �′

t can each either be the zero vector or any
one of the following:

m−k︷ ︸︸ ︷
[ 0 · · · 0

k︷ ︸︸ ︷
1 · · · 1

N−m︷ ︸︸ ︷
0 · · · 0] ,m = 0, . . . ,N , k = 1, . . . ,m,

where k describes the number of packets received at time
t and which contain control signals for that particular row
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in the buffer. Thus, the number of distinct patterns for
each of these rows are 1+∑N

m=1m. Since there is a total of
N −1 of such rows, the total number of distinct difference
matrices is

(N +1)
(
1+

N∑
m=1

m
)N−1

=(N +1)
(
1+ 1

2
N(N +1)

)N−1
.

The case of M < N follows easily from the above anal-
ysis. In this case, each row of �t can only take on M + 1
distinct patterns, i.e., the zero vector, or a vector con-
taining the number of consecutive ones corresponding to
the number of control values that are recovered, when
receiving J out of the M packets, where J = 1, . . . ,M. It
follows immediately that the number of possible differ-
ence indicator matrices is less for M < N compared to
M = N .

�

Appendix 2: Proof of Lemma 3.2
We first prove ergodicity. Clearly, from the all zero dif-
ference indicator matrix, it is possible to get to any other
difference indicator matrix in a finite number of steps.
Moreover, the probability of not receiving any packets
in N consecutive time steps is positively bounded away
from zero for any finite N. The all zero difference indica-
tor matrix can therefore be reached in a finite number of
steps (from any other difference indicator matrix). Thus,
it is possible to jump between any two difference indica-
tor matrices in a finite number of steps. We may therefore
view the difference indicator matrices as being the differ-
ent nodes in a fully connected graph. In this graph, any
node can be reached at irregular times. Thus, the nodes
are recurrent and aperiodic, which implies that they are
are ergodic and the sequence {�′

t} of difference indicator
matrices is therefore also ergodic.
We now prove the Markovian property. Observe that

the matrices in the sequence {�t} are not mutually inde-
pendent. However, the sequence does satisfy a first-order
Markov condition due to the Markov assumption on the
data reception, see Section 2.3, i.e.,

�t−1
0 ↔ �t ↔ �t+1, ∀t, (48)

which implies that knowledge of the buffer f̄ ′
t−1 does not

bringmore useful 7 information about the buffer f̄ ′
t+1 if the

buffer f̄ ′
t is already known. Similarly, it is easy to see that

the sequence {�′
t} of difference matrices form a Markov

chain similar to (48), i.e.,

{�′
i}t−1
i=0 ↔ �′

t ↔ �′
t+1, ∀t. (49)

Finally, the stationarity of the channel, see Section 2.3,
implies that the sequence of difference matrices {�′

t} is
stationary. This proves the lemma. �

Appendix 3: Proof of Theorem 3.1
In Lemma 3.2, we have established ergodicity and Markov
properties of the switching sequence {�′

t} as is required by
Lemma 3.3. We then need to derive the recursive form for
the system evolution, which guarantees that the combined
system {�t ,�′

t} will be Markovian.
Recall from (19) that f̄t(i) = δ̃Ti γi(Ut) for i = 1, . . . ,N .

However, to avoid updating the buffer with information
about packets that was already received in previous time
instances, we need to look only at the changes between�t
and �t−1. Towards that end, let δ′

i � γi(�t − S↓�t−1).
Define δ̃′

i in a similar manner as δ̃i. If δ′
i is the all zero vec-

tor for some i, it means that no new control signals to be
used at time t + i − 1 has been received yet. Thus, the
ith element of the buffer is then simply obtained by using
older control signals, i.e., f̄t(i) = f̄t−1(i + 1). With this, we
obtain the following recursion:

f̄t(i) = δ̃′T
i γi(Ut) +

(
1 − 1TN−i+1δ̃

′
i

)
f̄t−1(i + 1). (50)

Using (10) and (14), it is possible to write γi(Ut) as a
function of x̄t and n̄t , that is:

γi(Ut) =[ut(i),ut−1(i + 1), · · · ,ut−N+i(N)]T

=

⎡
⎢⎢⎢⎣

eTi �−1
xt
eTi+1�

−1
xt−1
. . .

eTN�−1
xt−N+i

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

eTi �−1nt
eTi+1�

−1nt−1
...

eTN�−1nt−N+i

⎤
⎥⎥⎥⎦ .

With the above notation, the system state vector recur-
sions can be written as:

xt+1 = Axt + B1(δ̃
′T
1 γ1(Ut)

+ (1 − 1TN δ̃′
1)e

T
1 S

↑ f̄t−1) + B2wt . (51)

Using that �t =
[
x̄t
f̄t

]
and combining (51) and (50) and

using the matrix definitions in (24) – (33) yields (23). This
proves the theorem. �

Appendix 4: Proof of Theorem 3.3
In order to provide an upper bound on the required bit
rate for transmitting the quantized control vector ξ ′

t , we
assume that the system is designed such that the loop is
AWSS. For such a system, the bit rate R of the ECDQ is
related to the discrete entropy H(ξ ′

t |ζt) of the quantized
signal ξ ′

t , conditioned upon the dither signal ζt [31]. That
is,

H(ξ ′
t |ζt) ≤ R ≤ H(ξ ′

t |ζt) + 1/N , (52)

where the term 1/N is the loss due to using entropy coding
on finite dimensional vectors [42]. At this point, we could
continue upper boundingH(ξ ′

t |ζt), which would then pro-
vide an upper bound on the bit rate required for coding
the entire control vector. However, recall that we need to
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send ξ ′
t usingM descriptions such that upon receiving any

0 < J ≤ M descriptions, the J control signals ũt(1), . . . , ũ′
t

can be reliably recovered. This is clearly not possible if ξ ′
t

is arbitrarily split into M sub-streams having a total bit
rate of H(ξ ′

t |ζt). In Section 4.2, we introduced a practical
scheme for MDs based on forward error correction codes.
With this scheme, a description is constructed by con-
catenating the entire bitstream used for representing the
encoded version of ũt(1) with half the bitstream used for
ũt(2), one third of the bits allocated for ũt(3), and so on.
With such a scheme in mind, we first invoke the chain rule
of entropies, in order to expand H(ξ ′

t |ζt) in (52) as:

H(ξ ′
t |ζt) = H(ξ ′

t (1)|ζt) + H(ξ ′
t (2)|ξ ′

t (1), ζt) + · · ·
+ H(ξ ′

t (N)|ξ ′
t (1), . . . , ξ ′

t (N − 1), ζt). (53)

The ith term on the r.h.s. of (53), describes the min-
imum bit rate required for conditionally encoding ξ ′

t (i).
With this, and using theMD construction sketched above,
the total rate RT required for all M = N descriptions is
given by:

RT ≤ M
(
H(ξ ′

t (1)|ζt) + 1
2
H(ξ ′

t (2)|ξ ′
t (1), ζt) + · · ·

+ 1
M

H(ξ ′
t (N)|ξ ′

t (1), . . . , ξ ′
t (N − 1), ζt)

)
+ 1. (54)

Since we are using an ECDQ, the discrete entropy of the
quantized variables satisfies:

H(ξ ′
t |ζt) = I(ξt ; ξ̂t) (55)

= I(ξt ; ξt + nt) (56)
≤ I(ξ̄t ; ξ̄t + n̄t) + D(nt‖n̄t), (57)

where equality in (55) follows from [31] and where I(ξt ; ξ̂t)
denotes the mutual information [30] between the input ξt
and the output ξ̂t of the ECDQ [31]. In (56), the equal-
ity follows by replacing the quantization operation by its
additive noise model, which is exact from a statistical
point of view [31]. The upper bound in (57) follows from
([43] Lemma 2) by replacing the variables in play by their
Gaussian counterparts, i.e., ξ̄t and n̄t are Gaussian dis-
tributed with the same first- and second moments as ξt
and nt , respectively. The Divergence operator D(nt‖n̄t)
describes the Kullback-Leibler distance (in bits) between
the distribution of the quantization noise nt to that of
a Gaussian distribution [30] and is in our case upper
bounded by D(nt‖n̄t) ≤ N/2 log2(πe/6). This upper
bound is achieved if nt is uniformly distributed over
an N-dimensional cube [44]. We may now proceed by
expressing the mutual information in terms of differential
entropies provided the latter exists [30]. Thus, we obtain
that I(ξ̄t ; ξ̄t + n̄t) = h(ξ̄t + n̄t) − h(n̄t). Using the same
idea on the conditional estimates ξt(i)|ξt(1), · · · , ξt(i − 1)
instead of the entire vector ξt leads to:

H(ξ ′
t (i)|ξ ′

t (1), . . . , ξ ′
t (i − 1), ζt)

≤ h(ξ̄t(i)|ξ̄t(1), · · · , ξ̄t(i − 1) + n̄t(i)) − h(n̄t(i))
+ 1/2 log2(πe/6)

= 1
2
log2

(
1 + σ 2

ξ ′(i)|ξ ′(1),··· ,ξ ′(i−1)
σ 2
n

)
+ 1

2
log2

(πe
6

)
,

(58)

where the last equality follows from the definition of dif-
ferential entropy of a Gaussian variable [30]. Inserting (58)
into (54) and (52) yields (45). This completes the proof. �
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