1,181 research outputs found

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    AI-based design methodologies for hot form quench (HFQ®)

    Get PDF
    This thesis aims to develop advanced design methodologies that fully exploit the capabilities of the Hot Form Quench (HFQ®) stamping process in stamping complex geometric features in high-strength aluminium alloy structural components. While previous research has focused on material models for FE simulations, these simulations are not suitable for early-phase design due to their high computational cost and expertise requirements. This project has two main objectives: first, to develop design guidelines for the early-stage design phase; and second, to create a machine learning-based platform that can optimise 3D geometries under hot stamping constraints, for both early and late-stage design. With these methodologies, the aim is to facilitate the incorporation of HFQ capabilities into component geometry design, enabling the full realisation of its benefits. To achieve the objectives of this project, two main efforts were undertaken. Firstly, the analysis of aluminium alloys for stamping deep corners was simplified by identifying the effects of corner geometry and material characteristics on post-form thinning distribution. New equation sets were proposed to model trends and design maps were created to guide component design at early stages. Secondly, a platform was developed to optimise 3D geometries for stamping, using deep learning technologies to incorporate manufacturing capabilities. This platform combined two neural networks: a geometry generator based on Signed Distance Functions (SDFs), and an image-based manufacturability surrogate model. The platform used gradient-based techniques to update the inputs to the geometry generator based on the surrogate model's manufacturability information. The effectiveness of the platform was demonstrated on two geometry classes, Corners and Bulkheads, with five case studies conducted to optimise under post-stamped thinning constraints. Results showed that the platform allowed for free morphing of complex geometries, leading to significant improvements in component quality. The research outcomes represent a significant contribution to the field of technologically advanced manufacturing methods and offer promising avenues for future research. The developed methodologies provide practical solutions for designers to identify optimal component geometries, ensuring manufacturing feasibility and reducing design development time and costs. The potential applications of these methodologies extend to real-world industrial settings and can significantly contribute to the continued advancement of the manufacturing sector.Open Acces

    Utilized System Model Using Channel State Information Network with Gated Recurrent Units (CsiNet-GRUs)

    Get PDF
    MIMO: multiple-input multiple-output technology uses multiple antennas to use reflected signals to provide channel robustness and throughput gains. It is advantageous in several applications like cellular systems, and users are distributed over a wide coverage area in various applications such as mobile systems, improving channel state information (CSI) processing efficiency in massive MIMO systems. This chapter proposes two channel-based deep learning methods to enhance the performance in a massive MIMO system and compares our proposed technique to the previous methods. The proposed technique is based on the channel state information network combined with the gated recurrent unit’s technique CsiNet-GRUs, which increases recovery efficiency. Besides, a fair balance between compression ratio (CR) and complexity is given using correlation time in training samples. The simulation results show that the proposed CsiNet-GRUs technique fulfills performance improvement compared with the existing literature techniques, namely CS-based methods Conv-LSTM CsiNet, LASSO, Tval3, and CsiNet

    Covariance matrix recovery from one-bit data with non-zero quantization thresholds: Algorithm and performance analysis

    Get PDF
    Covariance matrix recovery is a topic of great significance in the field of one-bit signal processing and has numerous practical applications. Despite its importance, the conventional arcsine law with zero threshold is incapable of recovering the diagonal elements of the covariance matrix. To address this limitation, recent studies have proposed the use of non-zero clipping thresholds. However, the relationship between the estimation error and the sampling threshold is not yet known. In this article, we undertake an analysis of the mean squared error by computing the Fisher information matrix for a given threshold. Our results reveal that the optimal threshold can vary considerably, depending on the variances and correlation coefficients. As a result, it is inappropriate to adopt a constant threshold to encompass parameters that vary widely. To mitigate this issue, we present a recovery scheme that incorporates time-varying thresholds. Our approach differs from existing methods in that it utilizes the exact values of the threshold, rather than its statistical properties, to increase the estimation accuracy. Simulation results, including those of the direction-of-arrival estimation problem, demonstrate the efficacy of the developed scheme, especially in complex scenarios where the covariance elements are widely separated.The work of Yu-Hang Xiao was supported in part by the National Natural Science Foundation of China under Grant 62201359. The work of Lei Huang was supported in part by the National Science Fund for Distinguished Young Scholars under Grant 61925108, and in part by the National Natural Science Foundation of China under Grant U1913221. The work of David Ramírez was supported in part by MCIN/AEI/10.13039/501100011033/FEDER, UE, under Grant PID2021-123182OB-I00 (EPiCENTER), and in part by the Office of Naval Research (ONR) Global under Contract N62909-23-1-2002.Publicad

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Synthetic Aperture Radar (SAR) Meets Deep Learning

    Get PDF
    This reprint focuses on the application of the combination of synthetic aperture radars and depth learning technology. It aims to further promote the development of SAR image intelligent interpretation technology. A synthetic aperture radar (SAR) is an important active microwave imaging sensor, whose all-day and all-weather working capacity give it an important place in the remote sensing community. Since the United States launched the first SAR satellite, SAR has received much attention in the remote sensing community, e.g., in geological exploration, topographic mapping, disaster forecast, and traffic monitoring. It is valuable and meaningful, therefore, to study SAR-based remote sensing applications. In recent years, deep learning represented by convolution neural networks has promoted significant progress in the computer vision community, e.g., in face recognition, the driverless field and Internet of things (IoT). Deep learning can enable computational models with multiple processing layers to learn data representations with multiple-level abstractions. This can greatly improve the performance of various applications. This reprint provides a platform for researchers to handle the above significant challenges and present their innovative and cutting-edge research results when applying deep learning to SAR in various manuscript types, e.g., articles, letters, reviews and technical reports

    Security and Privacy for Modern Wireless Communication Systems

    Get PDF
    The aim of this reprint focuses on the latest protocol research, software/hardware development and implementation, and system architecture design in addressing emerging security and privacy issues for modern wireless communication networks. Relevant topics include, but are not limited to, the following: deep-learning-based security and privacy design; covert communications; information-theoretical foundations for advanced security and privacy techniques; lightweight cryptography for power constrained networks; physical layer key generation; prototypes and testbeds for security and privacy solutions; encryption and decryption algorithm for low-latency constrained networks; security protocols for modern wireless communication networks; network intrusion detection; physical layer design with security consideration; anonymity in data transmission; vulnerabilities in security and privacy in modern wireless communication networks; challenges of security and privacy in node–edge–cloud computation; security and privacy design for low-power wide-area IoT networks; security and privacy design for vehicle networks; security and privacy design for underwater communications networks

    Efficient algorithms for simulation and analysis of many-body systems

    Get PDF
    This thesis introduces methods to efficiently generate and analyze time series data of many-body systems. While we have a strong focus on biomolecular processes, the presented methods can also be applied more generally. Due to limitations of microscope resolution in both space and time, biomolecular processes are especially hard to observe experimentally. Computer models offer an opportunity to work around these limitations. However, as these models are bound by computational effort, careful selection of the model as well as its efficient implementation play a fundamental role in their successful sampling and/or estimation. Especially for high levels of resolution, computer simulations can produce vast amounts of high-dimensional data and in general it is not straightforward to visualize, let alone to identify the relevant features and processes. To this end, we cover tools for projecting time series data onto important processes, finding over time geometrically stable features in observable space, and identifying governing dynamics. We introduce the novel software library deeptime with two main goals: (1) making methods which were developed in different communities (such as molecular dynamics and fluid dynamics) accessible to a broad user base by implementing them in a general-purpose way, and (2) providing an easy to install, extend, and maintain library by employing a high degree of modularity and introducing as few hard dependencies as possible. We demonstrate and compare the capabilities of the provided methods based on numerical examples. Subsequently, the particle-based reaction-diffusion simulation software package ReaDDy2 is introduced. It can simulate dynamics which are more complicated than what is usually analyzed with the methods available in deeptime. It is a significantly more efficient, feature-rich, flexible, and user-friendly version of its predecessor ReaDDy. As such, it enables---at the simulation model's resolution---the possibility to study larger systems and to cover longer timescales. In particular, ReaDDy2 is capable of modeling complex processes featuring particle crowding, space exclusion, association and dissociation events, dynamic formation and dissolution of particle geometries on a mesoscopic scale. The validity of the ReaDDy2 model is asserted by several numerical studies which are compared to analytically obtained results, simulations from other packages, or literature data. Finally, we present reactive SINDy, a method that can detect reaction networks from concentration curves of chemical species. It extends the SINDy method---contained in deeptime---by introducing coupling terms over a system of ordinary differential equations in an ansatz reaction space. As such, it transforms an ordinary linear regression problem to a linear tensor regression. The method employs a sparsity-promoting regularization which leads to especially simple and interpretable models. We show in biologically motivated example systems that the method is indeed capable of detecting the correct underlying reaction dynamics and that the sparsity regularization plays a key role in pruning otherwise spuriously detected reactions

    Diffusion Models in Vision: A Survey

    Full text link
    Denoising diffusion models represent a recent emerging topic in computer vision, demonstrating remarkable results in the area of generative modeling. A diffusion model is a deep generative model that is based on two stages, a forward diffusion stage and a reverse diffusion stage. In the forward diffusion stage, the input data is gradually perturbed over several steps by adding Gaussian noise. In the reverse stage, a model is tasked at recovering the original input data by learning to gradually reverse the diffusion process, step by step. Diffusion models are widely appreciated for the quality and diversity of the generated samples, despite their known computational burdens, i.e. low speeds due to the high number of steps involved during sampling. In this survey, we provide a comprehensive review of articles on denoising diffusion models applied in vision, comprising both theoretical and practical contributions in the field. First, we identify and present three generic diffusion modeling frameworks, which are based on denoising diffusion probabilistic models, noise conditioned score networks, and stochastic differential equations. We further discuss the relations between diffusion models and other deep generative models, including variational auto-encoders, generative adversarial networks, energy-based models, autoregressive models and normalizing flows. Then, we introduce a multi-perspective categorization of diffusion models applied in computer vision. Finally, we illustrate the current limitations of diffusion models and envision some interesting directions for future research.Comment: Accepted in IEEE Transactions on Pattern Analysis and Machine Intelligence. 25 pages, 3 figure
    corecore