Hamming Compressed Sensing


Compressed sensing (CS) and 1-bit CS cannot directly recover quantized signals and require time consuming recovery. In this paper, we introduce \textit{Hamming compressed sensing} (HCS) that directly recovers a k-bit quantized signal of dimensional nn from its 1-bit measurements via invoking nn times of Kullback-Leibler divergence based nearest neighbor search. Compared with CS and 1-bit CS, HCS allows the signal to be dense, takes considerably less (linear) recovery time and requires substantially less measurements (O(logn)\mathcal O(\log n)). Moreover, HCS recovery can accelerate the subsequent 1-bit CS dequantizer. We study a quantized recovery error bound of HCS for general signals and "HCS+dequantizer" recovery error bound for sparse signals. Extensive numerical simulations verify the appealing accuracy, robustness, efficiency and consistency of HCS.Comment: 33 pages, 8 figure

    Similar works

    Full text


    Available Versions