Compressed sensing (CS) and 1-bit CS cannot directly recover quantized
signals and require time consuming recovery. In this paper, we introduce
\textit{Hamming compressed sensing} (HCS) that directly recovers a k-bit
quantized signal of dimensional n from its 1-bit measurements via invoking
n times of Kullback-Leibler divergence based nearest neighbor search.
Compared with CS and 1-bit CS, HCS allows the signal to be dense, takes
considerably less (linear) recovery time and requires substantially less
measurements (O(logn)). Moreover, HCS recovery can accelerate the
subsequent 1-bit CS dequantizer. We study a quantized recovery error bound of
HCS for general signals and "HCS+dequantizer" recovery error bound for sparse
signals. Extensive numerical simulations verify the appealing accuracy,
robustness, efficiency and consistency of HCS.Comment: 33 pages, 8 figure