184 research outputs found

    Morphological Principal Component Analysis for Hyperspectral Image Analysis

    No full text
    International audienceThis paper deals with a problem of dimensionality reduction for hyperspectral images using the principal component analysis. Hyper-spectral image reduction is improved by adding structural/spatial information to the spectral information, by means of mathematical morphology tools. Then it can be useful in supervised classification for instance. The key element of the approach is the computation of a covariance matrix which integrates simultaneously both spatial and spectral information. Thanks to these new covariance matrices, new features can be extracted. To prove the efficiency of these new features we have conducted an extended study showing the interest of the structural/spatial information

    Graph Spectral Image Processing

    Full text link
    Recent advent of graph signal processing (GSP) has spurred intensive studies of signals that live naturally on irregular data kernels described by graphs (e.g., social networks, wireless sensor networks). Though a digital image contains pixels that reside on a regularly sampled 2D grid, if one can design an appropriate underlying graph connecting pixels with weights that reflect the image structure, then one can interpret the image (or image patch) as a signal on a graph, and apply GSP tools for processing and analysis of the signal in graph spectral domain. In this article, we overview recent graph spectral techniques in GSP specifically for image / video processing. The topics covered include image compression, image restoration, image filtering and image segmentation

    Harmonic Analysis Inspired Data Fusion for Applications in Remote Sensing

    Get PDF
    This thesis will address the fusion of multiple data sources arising in remote sensing, such as hyperspectral and LIDAR. Fusing of multiple data sources provides better data representation and classification results than any of the independent data sources would alone. We begin our investigation with the well-studied Laplacian Eigenmap (LE) algorithm. This algorithm offers a rich template to which fusion concepts can be added. For each phase of the LE algorithm (graph, operator, and feature space) we develop and test different data fusion techniques. We also investigate how partially labeled data and approximate LE preimages can used to achieve data fusion. Lastly, we study several numerical acceleration techniques that can be used to augment the developed algorithms, namely the Nystrom extension, Random Projections, and Approximate Neighborhood constructions. The Nystrom extension is studied in detail and the application of Frame Theory and Sigma-Delta Quantization is proposed to enrich the Nystrom extension

    Two and three dimensional segmentation of multimodal imagery

    Get PDF
    The role of segmentation in the realms of image understanding/analysis, computer vision, pattern recognition, remote sensing and medical imaging in recent years has been significantly augmented due to accelerated scientific advances made in the acquisition of image data. This low-level analysis protocol is critical to numerous applications, with the primary goal of expediting and improving the effectiveness of subsequent high-level operations by providing a condensed and pertinent representation of image information. In this research, we propose a novel unsupervised segmentation framework for facilitating meaningful segregation of 2-D/3-D image data across multiple modalities (color, remote-sensing and biomedical imaging) into non-overlapping partitions using several spatial-spectral attributes. Initially, our framework exploits the information obtained from detecting edges inherent in the data. To this effect, by using a vector gradient detection technique, pixels without edges are grouped and individually labeled to partition some initial portion of the input image content. Pixels that contain higher gradient densities are included by the dynamic generation of segments as the algorithm progresses to generate an initial region map. Subsequently, texture modeling is performed and the obtained gradient, texture and intensity information along with the aforementioned initial partition map are used to perform a multivariate refinement procedure, to fuse groups with similar characteristics yielding the final output segmentation. Experimental results obtained in comparison to published/state-of the-art segmentation techniques for color as well as multi/hyperspectral imagery, demonstrate the advantages of the proposed method. Furthermore, for the purpose of achieving improved computational efficiency we propose an extension of the aforestated methodology in a multi-resolution framework, demonstrated on color images. Finally, this research also encompasses a 3-D extension of the aforementioned algorithm demonstrated on medical (Magnetic Resonance Imaging / Computed Tomography) volumes

    Deep Hashing Based on Class-Discriminated Neighborhood Embedding

    Get PDF
    Deep-hashing methods have drawn significant attention during the past years in the field of remote sensing (RS) owing to their prominent capabilities for capturing the semantics from complex RS scenes and generating the associated hash codes in an end-to-end manner. Most existing deep-hashing methods exploit pairwise and triplet losses to learn the hash codes with the preservation of semantic-similarities which require the construction of image pairs and triplets based on supervised information (e.g., class labels). However, the learned Hamming spaces based on these losses may not be optimal due to an insufficient sampling of image pairs and triplets for scalable RS archives. To solve this limitation, we propose a new deep-hashing technique based on the class-discriminated neighborhood embedding, which can properly capture the locality structures among the RS scenes and distinguish images class-wisely in the Hamming space. An extensive experimentation has been conducted in order to validate the effectiveness of the proposed method by comparing it with several state-of-the-art conventional and deep-hashing methods. The related codes of this article will be made publicly available for reproducible research by the community

    Efficient Nonlinear Dimensionality Reduction for Pixel-wise Classification of Hyperspectral Imagery

    Get PDF
    Classification, target detection, and compression are all important tasks in analyzing hyperspectral imagery (HSI). Because of the high dimensionality of HSI, it is often useful to identify low-dimensional representations of HSI data that can be used to make analysis tasks tractable. Traditional linear dimensionality reduction (DR) methods are not adequate due to the nonlinear distribution of HSI data. Many nonlinear DR methods, which are successful in the general data processing domain, such as Local Linear Embedding (LLE) [1], Isometric Feature Mapping (ISOMAP) [2] and Kernel Principal Components Analysis (KPCA) [3], run very slowly and require large amounts of memory when applied to HSI. For example, applying KPCA to the 512×217 pixel, 204-band Salinas image using a modern desktop computer (AMD FX-6300 Six-Core Processor, 32 GB memory) requires more than 5 days of computing time and 28GB memory! In this thesis, we propose two different algorithms for significantly improving the computational efficiency of nonlinear DR without adversely affecting the performance of classification task: Simple Linear Iterative Clustering (SLIC) superpixels and semi-supervised deep autoencoder networks (SSDAN). SLIC is a very popular algorithm developed for computing superpixels in RGB images that can easily be extended to HSI. Each superpixel includes hundreds or thousands of pixels based on spatial and spectral similarities and is represented by the mean spectrum and spatial position of all of its component pixels. Since the number of superpixels is much smaller than the number of pixels in the image, they can be used as input for nonlinearDR, which significantly reduces the required computation time and memory versus providing all of the original pixels as input. After nonlinear DR is performed using superpixels as input, an interpolation step can be used to obtain the embedding of each original image pixel in the low dimensional space. To illustrate the power of using superpixels in an HSI classification pipeline,we conduct experiments on three widely used and publicly available hyperspectral images: Indian Pines, Salinas and Pavia. The experimental results for all three images demonstrate that for moderately sized superpixels, the overall accuracy of classification using superpixel-based nonlinear DR matches and sometimes exceeds the overall accuracy of classification using pixel-based nonlinear DR, with a computational speed that is two-three orders of magnitude faster. Even though superpixel-based nonlinear DR shows promise for HSI classification, it does have disadvantages. First, it is costly to perform out-of-sample extensions. Second, it does not generalize to handle other types of data that might not have spatial information. Third, the original input pixels cannot approximately be recovered, as is possible in many DR algorithms.In order to overcome these difficulties, a new autoencoder network - SSDAN is proposed. It is a fully-connected semi-supervised autoencoder network that performs nonlinear DR in a manner that enables class information to be integrated. Features learned from SSDAN will be similar to those computed via traditional nonlinear DR, and features from the same class will be close to each other. Once the network is trained well with training data, test data can be easily mapped to the low dimensional embedding. Any kind of data can be used to train a SSDAN,and the decoder portion of the SSDAN can easily recover the initial input with reasonable loss.Experimental results on pixel-based classification in the Indian Pines, Salinas and Pavia images show that SSDANs can approximate the overall accuracy of nonlinear DR while significantly improving computational efficiency. We also show that transfer learning can be use to finetune features of a trained SSDAN for a new HSI dataset. Finally, experimental results on HSI compression show a trade-off between Overall Accuracy (OA) of extracted features and PeakSignal to Noise Ratio (PSNR) of the reconstructed image
    • …
    corecore