34,670 research outputs found

    Optimal Asymmetric Binary Quantization for Estimation Under Symmetrically Distributed Noise

    Full text link
    Estimation of a location parameter based on noisy and binary quantized measurements is considered in this letter. We study the behavior of the Cramer-Rao bound as a function of the quantizer threshold for different symmetric unimodal noise distributions. We show that, in some cases, the intuitive choice of threshold position given by the symmetry of the problem, placing the threshold on the true parameter value, can lead to locally worst estimation performance.Comment: 4 pages, 5 figure

    Distributed Estimation of a Parametric Field Using Sparse Noisy Data

    Full text link
    The problem of distributed estimation of a parametric physical field is stated as a maximum likelihood estimation problem. Sensor observations are distorted by additive white Gaussian noise. Prior to data transmission, each sensor quantizes its observation to MM levels. The quantized data are then communicated over parallel additive white Gaussian channels to a fusion center for a joint estimation. An iterative expectation-maximization (EM) algorithm to estimate the unknown parameter is formulated, and its linearized version is adopted for numerical analysis. The numerical examples are provided for the case of the field modeled as a Gaussian bell. The dependence of the integrated mean-square error on the number of quantization levels, the number of sensors in the network and the SNR in observation and transmission channels is analyzed.Comment: to appear at Milcom-201

    A Joint Model and Data Driven Method for Distributed Estimation

    Full text link
    This paper considers the problem of distributed estimation in wireless sensor networks (WSN), which is anticipated to support a wide range of applications such as the environmental monitoring, weather forecasting, and location estimation. To this end, we propose a joint model and data driven distributed estimation method by designing the optimal quantizers and fusion center (FC) based on the Bayesian and minimum mean square error (MMSE) criterions. First, universal mean square error (MSE) lower bound for the quantization-based distributed estimation is derived and adopted as the design metric for the quantizers. Then, the optimality of the mean-fusion operation for the FC with MMSE criterion is proved. Next, by exploiting different levels of the statistic information of the desired parameter and observation noise, a joint model and data driven method is proposed to train parts of the quantizer and FC modules as deep neural networks (DNNs), and two loss functions derived from the MMSE criterion are adopted for the sequential training scheme. Furthermore, we extend the above results to the case with multi-bit quantizers, considering both the parallel and one-hot quantization schemes. Finally, simulation results reveal that the proposed method outperforms the state-of-the-art schemes in typical scenarios.Comment: in IEEE Internet of Things Journa

    Gossip Algorithms for Distributed Signal Processing

    Full text link
    Gossip algorithms are attractive for in-network processing in sensor networks because they do not require any specialized routing, there is no bottleneck or single point of failure, and they are robust to unreliable wireless network conditions. Recently, there has been a surge of activity in the computer science, control, signal processing, and information theory communities, developing faster and more robust gossip algorithms and deriving theoretical performance guarantees. This article presents an overview of recent work in the area. We describe convergence rate results, which are related to the number of transmitted messages and thus the amount of energy consumed in the network for gossiping. We discuss issues related to gossiping over wireless links, including the effects of quantization and noise, and we illustrate the use of gossip algorithms for canonical signal processing tasks including distributed estimation, source localization, and compression.Comment: Submitted to Proceedings of the IEEE, 29 page

    Optimizing Lossy Compression Rate-Distortion from Automatic Online Selection between SZ and ZFP

    Full text link
    With ever-increasing volumes of scientific data produced by HPC applications, significantly reducing data size is critical because of limited capacity of storage space and potential bottlenecks on I/O or networks in writing/reading or transferring data. SZ and ZFP are the two leading lossy compressors available to compress scientific data sets. However, their performance is not consistent across different data sets and across different fields of some data sets: for some fields SZ provides better compression performance, while other fields are better compressed with ZFP. This situation raises the need for an automatic online (during compression) selection between SZ and ZFP, with a minimal overhead. In this paper, the automatic selection optimizes the rate-distortion, an important statistical quality metric based on the signal-to-noise ratio. To optimize for rate-distortion, we investigate the principles of SZ and ZFP. We then propose an efficient online, low-overhead selection algorithm that predicts the compression quality accurately for two compressors in early processing stages and selects the best-fit compressor for each data field. We implement the selection algorithm into an open-source library, and we evaluate the effectiveness of our proposed solution against plain SZ and ZFP in a parallel environment with 1,024 cores. Evaluation results on three data sets representing about 100 fields show that our selection algorithm improves the compression ratio up to 70% with the same level of data distortion because of very accurate selection (around 99%) of the best-fit compressor, with little overhead (less than 7% in the experiments).Comment: 14 pages, 9 figures, first revisio
    • …
    corecore