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ABSTRACT

Aiming for low-complexity encoding, distributed video
coders still fail to achieve the performance of current in-
dustrial standards for video coding. One of most important
problems in this area is the accurate modeling of the corre-
lation between the predicted signal and the original video.
In our previous work we showed that exploiting the quan-
tization distortion can significantly improve the accuracy of
a correlation estimator. In this paper we describe how the
quantization distortion can be exploited purely at the decoder
side without any performance penalty when compared to an
encoder-aided system. As a result, the proposed correlation
estimator delivers state-of-the-art modeling accuracy while
neatly fitting the low-encoder-complexity characteristic of
distributed video coding.

Index Terms— distributed video coding, correlation mod-
eling, quantization distortion

1. INTRODUCTION

Based on Wyner-Ziv theory, distributed video coders repre-
sent an alternative to the fixed complexity distribution in pre-
dictive coders, specified by the current industrial standards.
Offering low-complexity encoding, distributed coders are ide-
ally suited for application scenarios involving deployment of
a large number of power- or hardware-constrained devices,
e.g., (wireless) video surveillance.

Unfortunately, Distributed Video Coding (DVC) still
fails to match the coding performance of predictive coding
schemes. One of the most important factors [1] influenc-
ing the coding performance is the accurate modeling of the
correlation between the original video signal available at the
encoder and the predicted signal (or so-called side informa-
tion), which is generated at the decoder in DVC systems.

Typical improvements in correlation modeling result in
gains which are limited to high rates [2, 3]. Recently, we have
proposed a correlation estimator which exploits the distortion
induced by quantization in order to achieve systematic coding
gains throughout the entire rate region [4, 5]. The proposed

method employed the encoder to estimate the distortion and
send necessary information through the video stream. This in-
troduces an unnecessary, albeit small, overhead both in terms
of bit-rate and encoder complexity. To alleviate this problem,
we have designed a pure decoder-based method to estimate
the quantization distortion which is employed in our correla-
tion estimator.

The main contribution of this paper is the description of a
decoder-based correlation estimator which exploits the quan-
tization distortion in order to achieve an accurate estimation
of the correlation throughout the entire rate region. We de-
scribe our correlation estimator itself in Sect. 3.1, while in
Sect. 3.2 we focus on the decoder-based estimation of quanti-
zation distortion.

In order to assess the impact of pure decoder-based esti-
mation as opposed to encoder-aided estimation, and to posi-
tion our estimator relative to state-of-the-art correlation esti-
mators, we have conducted experiments using the DVC ar-
chitecture described in Sect. 2. The results reported in Sect. 4
indicate that exploiting the quantization distortion in corre-
lation estimation yields significant coding gains, while doing
that purely at the decoder brings no performance penalty com-
pared to encoder-aided estimation.

2. CODEC ARCHITECTURE

The general architecture of our codec (Fig. 1) is based on the
common DVC schema well described in the literature, e.g.
[6]. The frames are divided into key frames In and Wyner-
Ziv frames Xn based on a fixed GOP structure. Key frames
are intra coded using an H.264/AVC intra coder. For each
Wyner-Ziv frame Xn, the decoder generates a prediction Yn

as a motion-compensated interpolation of previously decoded
frames [6]. The prediction can be seen as a noisy version of
the original frame corrupted by virtual noise1 Nn = Xn−Yn.
By applying an error-correcting code at the encoder and send-
ing parity bits to the decoder, the errors in the prediction are

1Due to the description of the problem using the virtual noise abstraction,
correlation estimation is often referred to as virtual-noise estimation.



corrected and the decoded Wyner-Ziv frame X̂n is obtained2.
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Fig. 1. The codec extracts bitplanes from transformed (T) and
quantized (Q) frames, and the parity bits calculated for each
bitplane by a turbo coder are used to correct the prediction at
the decoder.

3. CORRELATION ESTIMATOR

In this section we describe our correlation estimator in two
steps. In Sect. 3.1, we describe correlation estimation as pro-
posed in our previous work [5]. Then we show how this esti-
mation can be improved by a no-reference quality assessment
at the decoder (Sect. 3.2).

3.1. Correlation estimation

As common in the DVC literature, we will assume that the
virtual noise follows a Laplacian distribution, given by

fX|Y (x|y) =
λk

2
e−λk|x−y| , (1)

where λk > 0 is the scale parameter, which is to be estimated
by the correlation estimator on a block basis.

Most of the state-of-the-art estimators rely on the motion-
compensated residual frame R to estimate the correlation.
The residual frame is defined as

Rn(p) = X̂n−i(p + m−(p))− X̂n+i(p + m+(p)) , (2)

where p denotes the position in the frame and m−(p)),
m+(p)) denote the motion vectors pointing to the previous
reference frame X̂n−i and the future reference frame X̂n+i,
respectively.

As we have pointed out in our previous work [4, 5], the
residual frame alone is not enough to obtain an accurate corre-
lation estimation for the following reasons. Firstly, the resid-
ual frame does not properly reflect changes in quantization
settings. Secondly, the spatial properties of the residual frame

2In the following, we drop the temporal index of the frame when it is clear
from the context.

usually differ from those of the virtual-noise frame, which im-
pairs the correlation estimation in the frequency domain when
the transformed residual frame is used. To solve these issues,
we have proposed a two-tier estimator [5], as described in the
following.

In the first step, the virtual noise in the pixel domain is
estimated using maximum-likelihood estimation

λk =
1
nk

, (3)

where nk is the average of the absolute value of the noise
in a block Bk. Because the value of nk is not known at the
decoder, it is estimated using

nk =
rk

2
+ q , (4)

where rk is the average of the absolute value of the residual
frame in the block Bk and q is the average (absolute) distor-
tion of the reference frames. Eq. (4) is based on an analytical
model for motion-compensated interpolation we described in
[5]. The rationale behind the model is that the virtual noise
is a compound distortion consisting of a mismatch caused by
block-based motion estimation (rk/2) and the distortion al-
ready present in the reference frames (q).

In our previous work, we approximated the second term
q with the quantization distortion in the intra coded frames,
which was calculated at the encoder side and sent along the
stream. The main contribution of this paper is a method for
estimation of q at the decoder side, which we describe in
Sect. 3.2.

The second tier of our correlation estimator employs the
virtual noise estimated in the pixel domain to obtain estima-
tion of the correlation in the frequency domain. As we al-
ready pointed out in [5], this approach has the advantage of in-
creased statistical support for the estimation and alleviates the
problem of improper spatial properties of the residual frame.

As pointed out by several authors [3, 5], the per-band vari-
ance of the noise signal in the frequency domain can be ex-
pressed using the variance of the noise in the pixel domain
as

σ2

N
(b)
k

= σ2
Nk

V (b) , (5)

where σ2
Nk

is variance of the pixel domain noise which is cal-
culated as σ2

Nk
= 2/λ2

k using parameter λk obtained in the
pixel domain, and V (b) is a scale factor for band b, which
depends on the autocorrelation of the noise signal. In our pre-
vious work, we modeled the autocorrelation of the noise as a
mixture of autocorrelation of the previously decoded Wyner-
Ziv frame, estimated at the decoder, and the autocorrelation of
the previously decoded key frame. The latter was estimated at
the encoder and communicated through the bitstream. In this
paper we show how V (b) can be accurately estimated purely
at the decoder, alleviating the need for encoder-decoder com-
munication (Sect. 3.2).



3.2. Decoder-side distortion estimation

The distortion of the key frames and their spatial properties
(autocorrelation) exploited in our estimator (Sect. 3.1) are
very important for accurate correlation estimation, especially
at low bit rates. Albeit very small, the approach from [5]
still imposes overhead on the bit rate and encoder complexity
by measuring the required values at the encoder and sending
them along the stream. We now propose a method to estimate
q and V (b) required in (4) and (5), respectively, purely at the
decoder side.

The method is based on no-reference image quality as-
sessment proposed by Brandão and Queluz [7]. The distribu-
tion in frequency band b of the signal to be coded—in the case
of the H.264/AVC intra coder, the residual after subtracting
the intra prediction—is assumed to be Laplacian with scale
parameter α(b). For each band the scale parameter is obtained
as a weighted average of the maximum-likelihood estimation
α

(b)
ML and prediction from the previously estimated bands α

(b)
p

as follows

α(b) = (1− r
(b)
0 )α(b)

ML + r
(b)
0 α(b)

p . (6)

In (6), the weighting coefficient r
(b)
0 = M

(b)
0 /M is taken as

the ratio between the number of coefficients in band b quan-
tized to zero M

(b)
0 and the total number of coefficients in the

band M . The prediction term α
(b)
p in (6) is used to compen-

sate for overflow in maximum-likelihood estimation when al-
most all coefficients are quantized to zero M

(b)
0 → M , i.e. at

low bit rates and/or in high frequency bands.
The maximum-likelihood estimation operates with the

number of zero coefficients M
(b)
0 and the sum of abso-

lute values of the inverse quantized coefficients S(b) =∑M−1
l=0 |X(b)

l |, and the estimated parameter reads as

α
(b)
ML = − 2

Q
log

−M
(b)
0 Q +

√
D

2MQ + 4S(b)
(7)

where Q denotes the quantizer step size and D reads as D =
(M (b)

0 Q)2 − 4(MQ + 2S(b))((M −M
(b)
0 )Q− 2S(b)).

For all AC bands, α(b)
p is predicted from already estimated

parameters (estimation is performed in zig-zag scan order) as

α(b)
p = α(b)β(b)T

, (8)

where α(b) = (1, α(0), . . . α(b−1)) and β(b) is the predictor
vector. β(b) is trained offline by minimizing the prediction
error on a given training set. The training procedure is de-
scribed in great detail in [7].

Knowing the parameter of the distribution, one can calcu-
late the squared distortion that a scalar quantizer with known
quantization step and deadzone parameter will induce on such
signal. Obtaining the distortion includes some heavy, albeit
straightforward, algebraic manipulations [8]. We will denote
with σ2

(b) the squared distortion induced by quantization of

the band b. Recognizing that the DCT is an orthogonal trans-
form3, we can clearly see that the squared distortion in the
key frame, i.e. variance of the frame difference I − Î , could
be expressed (for a 4× 4 transform) as

σ2
I−Î

=
1
16

15∑
b=0

σ2
(b) . (9)

Assuming that I − Î follows a Laplace distribution, we can
express the required average absolute value of the distortion
in the key frames as

q =

√
σ2

I−Î

2
, (10)

which can be directly used in (4).
Having estimated the quantization distortion q, we still

need to obtain the scaling factor V (b) from (5). V (b) can be
expressed as

V (b) =
∑
p1

∑
p2

c(b)
p1

c(b)
p2

RN (p1,p2) (11)

where c
(b)
p1 and c

(b)
p2 are the corresponding coefficients of the

transformation [3, 5], RN (p1,p2) is the autocorrelation of
N = X − Y , and the pixel positions p1,p2 loop through
the whole (4 × 4) transform block. We proposed to approx-
imate the autocorrelation function as a weighted average of
two autocorrelations—autocorrelation of frame difference
between the previously decoded Wyner-Ziv frame and its
prediction X̂p − Yp, and autocorrelation of frame difference
between the last decoded key frame and its original I − Î .
Together with the weighting coefficient, the autocorrelation
reads as

RN (.) = wRX̂p−Yp
(.) + (1− w)RI−Î(.) (12)

w = σ2
X̂p−Yp

/(σ2
X̂p−Yp

+ σ2
I−Î

) . (13)

Analyzing (11) and (12), one can clearly see that the scal-
ing factor V (b) can be expressed as the following average:
V (b) = wV

(b)

X̂p−Yp
+ (1−w)V (b)

I−Î
, where both terms V

(b)

X̂p−Yp

and V
(b)

I−Î
are given as a sum similar to (11) with respective au-

tocorrelation functions RX̂p−Yp
and RI−Î . Because X̂p− Yp

can be constructed at the decoder, σ2
X̂p−Yp

and RX̂p−Yp
can

be calculated directly. σ2
I−Î

is obtained by no-reference dis-
tortion estimation (9) and we propose to estimate the scaling
factor V

(b)

I−Î
with the already obtained information as

V
(b)

I−Î
= σ2

(b)/σ2
I−Î

. (14)

Using the method described in the previous paragraphs,
the proposed estimator alleviates the need for encoder-
decoder communication, saving the bit rate and encoder
complexity required for such communication.

3In case of the H.264/AVC integer transform, one needs to account for
the scaling first.



Table 1. The relative error |q− qe|/qe of no-reference distor-
tion assessment according to Eq. (10).

QP M&D Foreman Coastguard Mobile
20 0.04 0.03 0.12 0.04
25 0.09 0.01 0.15 0.02
30 0.07 0.04 0.17 0.01
35 0.03 0.03 0.23 0.03

4. EXPERIMENTAL RESULTS

We trained the predictor vector (8) on 12 sequences, different
than the test sequences. Tests were conducted on four CIF
sequences (30 Hz): Mother and daughter (M&D), Foreman,
Coastguard and Mobile. GOP sizes of 4 and 8 were used.

First, we explored the accuracy of the distortion q esti-
mated at the decoder (10) by comparing it to the distortion qe

as measured at the encoder. The results (Tab. 1) show that the
proposed no-reference quality assessment provides a highly
accurate estimation for most sequences.

To assess the impact of the correlation estimator on the
RD performance, we have compared our DVC system em-
ploying the proposed estimator, the estimator proposed in
our previous work [5] and the state-of-the-art correlation
estimator as described by Brites and Pereira in [1]. Our es-
timator outperforms the state-of-the-art with average bit rate
gains of 2.8% (Mobile), 10.8% (Foreman), 13.2% (Coast-
guard) and 13.9% (Mother and daughter), as measured by the
Bjøntegaard-Delta metric. These gains are systematic over
the entire rate region and are brought by the use of the quanti-
zation term q in (4); we notice also that having gains over the
entire rate range is in steep contrast to typical gains reported
in literature, which tend to diminish towards low rates.

Comparing to our previous work [5], where the quantiza-
tion distortion is calculated at the encoder, we can see that (i)
no-reference assessment at the decoder provides an accurate
estimation of the distortion and (ii) the proposed estimator is
not hindered by the lack of exact data from the encoder. On
the contrary, by eliminating the need for sending the distortion
values in the stream, small gains—between 0.2% and 0.5% of
Bjøntegaard-Delta rate—are achieved. Moreover, the estima-
tor seems to be robust against occasional inaccuracies in the
distortion assessment as shown in Fig. 2, where the sequence
with the largest relative error is depicted.

5. CONCLUSIONS

It is clear (from results presented here or in our previous work
[4, 5]) that exploiting the distortion in the reference frames
significantly improves the accuracy of correlation estima-
tion in DVC. The method proposed in this paper estimates
this distortion purely at the decoder side. We have shown
that, when compared to encoder-aided estimation, using no-
reference quality assessment does not decrease the accuracy
of the correlation estimator while it reduces the bit rate and
encoder complexity.
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Fig. 2. Exploiting the quantization distortion leads to signif-
icant gains over the state-of-the-art estimators, whether the
no-reference decoder-side assessment (proposed) or encoder-
aided exact measurement ([5]) is employed. Coastguard,
CIF@30Hz, GOP 8.
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