98,765 research outputs found

    Teaching old sensors New tricks: archetypes of intelligence

    No full text
    In this paper a generic intelligent sensor software architecture is described which builds upon the basic requirements of related industry standards (IEEE 1451 and SEVA BS- 7986). It incorporates specific functionalities such as real-time fault detection, drift compensation, adaptation to environmental changes and autonomous reconfiguration. The modular based structure of the intelligent sensor architecture provides enhanced flexibility in regard to the choice of specific algorithmic realizations. In this context, the particular aspects of fault detection and drift estimation are discussed. A mixed indicative/corrective fault detection approach is proposed while it is demonstrated that reversible/irreversible state dependent drift can be estimated using generic algorithms such as the EKF or on-line density estimators. Finally, a parsimonious density estimator is presented and validated through simulated and real data for use in an operating regime dependent fault detection framework

    A Theoretically Guaranteed Deep Optimization Framework for Robust Compressive Sensing MRI

    Full text link
    Magnetic Resonance Imaging (MRI) is one of the most dynamic and safe imaging techniques available for clinical applications. However, the rather slow speed of MRI acquisitions limits the patient throughput and potential indi cations. Compressive Sensing (CS) has proven to be an efficient technique for accelerating MRI acquisition. The most widely used CS-MRI model, founded on the premise of reconstructing an image from an incompletely filled k-space, leads to an ill-posed inverse problem. In the past years, lots of efforts have been made to efficiently optimize the CS-MRI model. Inspired by deep learning techniques, some preliminary works have tried to incorporate deep architectures into CS-MRI process. Unfortunately, the convergence issues (due to the experience-based networks) and the robustness (i.e., lack real-world noise modeling) of these deeply trained optimization methods are still missing. In this work, we develop a new paradigm to integrate designed numerical solvers and the data-driven architectures for CS-MRI. By introducing an optimal condition checking mechanism, we can successfully prove the convergence of our established deep CS-MRI optimization scheme. Furthermore, we explicitly formulate the Rician noise distributions within our framework and obtain an extended CS-MRI network to handle the real-world nosies in the MRI process. Extensive experimental results verify that the proposed paradigm outperforms the existing state-of-the-art techniques both in reconstruction accuracy and efficiency as well as robustness to noises in real scene

    Growth and characterization of binary and pseudo-binary 3-5 compounds exhibiting non-linear optical behavior. Undergraduate research opportunities in microgravity science and technology

    Get PDF
    In line with the specified objectives, a Bridgman-type growth configuration in which unavoidable end effects - conventionally leading to growth interface relocation - are compensated by commensurate input-power changes is developed; the growth rate on a microscale is predictable and unaffected by changes in heat transfer conditions. To permit quantitative characterization of the growth furnace cavity (hot-zone), a 3-D thermal field mapping technique, based on the thermal image, is being tested for temperatures up to 1100 C. Computational NIR absorption analysis was modified to now permit characterization of semi-insulating single crystals. Work on growth and characterization of bismuth-silicate was initiated. Growth of BSO (B12SiO20) for seed material by the Czochralski technique is currently in progress. Undergraduate research currently in progress includes: ground based measurements of the wetting behavior (contact angles) of semiconductor melts on substrates consisting of potential confinement materials for solidification experiments in a reduced gravity environment. Hardware modifications required for execution of the wetting experiments in a KC-135 facility are developed
    corecore