10,036 research outputs found

    A kinematic and computational study of leech crawling: Support for a CPG based on travelling waves of excitation.

    Get PDF
    Many well characterized central pattern generators (CPGs) underlie behaviors (e.g., swimming, flight, heartbeat) that require regular rhythmicity and strict phase relationships. Here, we examine the organization of a CPG for leech crawling, a behavior whose success depends more on its flexibility than on its precise coordination. We examined the organization of this CPG by first characterizing the kinematics of crawling steps in normal and surgically manipulated animals, then by exploring its features in a simple neuronal model. The behavioral observations revealed the following. (1) Intersegmental coordination varied considerably with step duration, whereas the rates of elongation and contraction within individual segments were relatively constant. (2) Steps were generated in the absence of both head and tail brains, implying that midbody ganglia contain a CPG for step production. (3) Removal of sensory feedback did not affect step coordination or timing. (4) Imposed stretch greatly lengthened transitions between elongation and contraction, indicating that sensory pathways feed back onto the CPG. A simple model reproduced essential features of the observed kinematics. This model consisted of an oscillator that initiates propagating segmental waves of activity in excitatory neuronal chains, along with a parallel descending projection; together, these pathways could produce the observed intersegmental lags, coordination between phases, and step duration. We suggest that the proposed model is well suited to be modified on a step-by-step basis and that crawling may differ substantially from other described CPGs, such as that for swimming in segmented animals, where individual segments produce oscillations that are strongly phase-locked to one another

    Predictive modelling of human walking over a complete gait cycle

    Get PDF
    An inverse dynamics multi-segment model of the body was combined with optimisation techniques to simulate normal walking in the sagittal plane on level ground. Walking is formulated as an optimal motor task subject to multiple constraints with minimisation of mechanical energy expenditure over a complete gait cycle being the performance criterion. All segmental motions and ground reactions were predicted from only three simple gait descriptors (inputs): walking velocity, cycle period and double stance duration. Quantitative comparisons of the model predictions with gait measurements show that the model reproduced the significant characteristics of normal gait in the sagittal plane. The simulation results suggest that minimising energy expenditure is a primary control objective in normal walking. However, there is also some evidence for the existence of multiple concurrent performance objectives. Keywords: Gait prediction; Inverse dynamics; Optimisation; Optimal motor tas

    Feedforward and feedback control in apraxia of speech: effects of noise masking on vowel production

    Full text link
    PURPOSE: This study was designed to test two hypotheses about apraxia of speech (AOS) derived from the Directions Into Velocities of Articulators (DIVA) model (Guenther et al., 2006): the feedforward system deficit hypothesis and the feedback system deficit hypothesis. METHOD: The authors used noise masking to minimize auditory feedback during speech. Six speakers with AOS and aphasia, 4 with aphasia without AOS, and 2 groups of speakers without impairment (younger and older adults) participated. Acoustic measures of vowel contrast, variability, and duration were analyzed. RESULTS: Younger, but not older, speakers without impairment showed significantly reduced vowel contrast with noise masking. Relative to older controls, the AOS group showed longer vowel durations overall (regardless of masking condition) and a greater reduction in vowel contrast under masking conditions. There were no significant differences in variability. Three of the 6 speakers with AOS demonstrated the group pattern. Speakers with aphasia without AOS did not differ from controls in contrast, duration, or variability. CONCLUSION: The greater reduction in vowel contrast with masking noise for the AOS group is consistent with the feedforward system deficit hypothesis but not with the feedback system deficit hypothesis; however, effects were small and not present in all individual speakers with AOS. Theoretical implications and alternative interpretations of these findings are discussed.R01 DC002852 - NIDCD NIH HHS; R01 DC007683 - NIDCD NIH HH

    A Dynamic Approach to Rhythm in Language: Toward a Temporal Phonology

    Full text link
    It is proposed that the theory of dynamical systems offers appropriate tools to model many phonological aspects of both speech production and perception. A dynamic account of speech rhythm is shown to be useful for description of both Japanese mora timing and English timing in a phrase repetition task. This orientation contrasts fundamentally with the more familiar symbolic approach to phonology, in which time is modeled only with sequentially arrayed symbols. It is proposed that an adaptive oscillator offers a useful model for perceptual entrainment (or `locking in') to the temporal patterns of speech production. This helps to explain why speech is often perceived to be more regular than experimental measurements seem to justify. Because dynamic models deal with real time, they also help us understand how languages can differ in their temporal detail---contributing to foreign accents, for example. The fact that languages differ greatly in their temporal detail suggests that these effects are not mere motor universals, but that dynamical models are intrinsic components of the phonological characterization of language.Comment: 31 pages; compressed, uuencoded Postscrip

    Neuronal Control of Swimming Behavior: Comparison of Vertebrate and Invertebrate Model Systems

    Get PDF
    Swimming movements in the leech and lamprey are highly analogous, and lack homology. Thus, similarities in mechanisms must arise from convergent evolution rather than from common ancestry. Despite over 40 years of parallel investigations into this annelid and primitive vertebrate, a close comparison of the approaches and results of this research is lacking. The present review evaluates the neural mechanisms underlying swimming in these two animals and describes the many similarities that provide intriguing examples of convergent evolution. Specifically, we discuss swim initiation, maintenance and termination, isolated nervous system preparations, neural-circuitry, central oscillators, intersegmental coupling, phase lags, cycle periods and sensory feedback. Comparative studies between species highlight mechanisms that optimize behavior and allow us a broader understanding of nervous system function

    Defective neural motor speech mappings as a source for apraxia of speech : evidence from a quantitative neural model of speech processing

    Get PDF
    This unique resource reviews research evidence pertaining to best practice in the clinical assessment of established areas such as intelligibility and physiological functioning, as well as introducing recently developed topics such as conversational analysis, participation measures, and telehealth. In addition, new and established research methods from areas such as phonetics, kinematics, imaging, and neural modeling are reviewed in relation to their applicability and value for the study of disordered speech. Based on the broad coverage of topics and methods, the textbook represents a valuable resource for a wide ranging audience, including clinicians, researchers, as well as students with an interest in speech pathology and clinical phonetics

    The effect of experimental low back pain on lumbar muscle activity in people with a history of clinical low back pain: a muscle functional MRI study

    Get PDF
    In people with a history of low back pain (LBP), structural and functional alterations have been observed at several peripheral and central levels of the sensorimotor pathway. These existing alterations might interact with the way the sensorimotor system responds to pain. We examined this assumption by evaluating the lumbar motor responses to experimental nociceptive input of 15 participants during remission of unilateral recurrent LBP. Quantitative T2 images (muscle functional MRI) were taken bilaterally of multifidus, erector spinae, and psoas at several segmental levels (L3 upper and L4 upper and lower endplate) and during several conditions: 1) at rest, 2) upon trunk-extension exercise without pain, and 3) upon trunk-extension exercise with experimental induced pain at the clinical pain-side (1.5-ml intramuscular hypertonic saline injections in erector spinae). Following experimental pain induction, muscle activity levels similarly reduced for all three muscles, on both painful and nonpainful sides, and at multiple segmental levels (P = 0.038). Pain intensity and localization from experimental LBP were similar as during recalled clinical LBP episodes. In conclusion, unilateral and unisegmental experimental LBP exerts a generalized and widespread decrease in lumbar muscle activity during remission of recurrent LBP. This muscle response is consistent with previous observed patterns in healthy people subjected to the same experimental pain paradigm. It is striking that similar inhibitory patterns in response to pain could be observed, despite the presence of preexisting alterations in the lumbar musculature during remission of recurrent LBP. These results suggest that motor output can modify along the course of recurrent LBP

    Mechano-electric heterogeneity of the myocardium as a paradigm of its function

    Get PDF
    Myocardial heterogeneity is well appreciated and widely documented, from sub-cellular to organ levels. This paper reviews significant achievements of the group, led by Professor Vladimir S. Markhasin, Russia, who was one of the pioneers in studying and interpreting the relevance of cardiac functional heterogeneity
    corecore