340,144 research outputs found

    Model checking Quantitative Linear Time Logic

    Get PDF
    This paper considers QLtl, a quantitative analagon of Ltl and presents algorithms for model checking QLtl over quantitative versions of Kripke structures and Markov chains

    Model Checking Probabilistic Pushdown Automata

    Get PDF
    We consider the model checking problem for probabilistic pushdown automata (pPDA) and properties expressible in various probabilistic logics. We start with properties that can be formulated as instances of a generalized random walk problem. We prove that both qualitative and quantitative model checking for this class of properties and pPDA is decidable. Then we show that model checking for the qualitative fragment of the logic PCTL and pPDA is also decidable. Moreover, we develop an error-tolerant model checking algorithm for PCTL and the subclass of stateless pPDA. Finally, we consider the class of omega-regular properties and show that both qualitative and quantitative model checking for pPDA is decidable

    Model Checking the Quantitative mu-Calculus on Linear Hybrid Systems

    Full text link
    We study the model-checking problem for a quantitative extension of the modal mu-calculus on a class of hybrid systems. Qualitative model checking has been proved decidable and implemented for several classes of systems, but this is not the case for quantitative questions that arise naturally in this context. Recently, quantitative formalisms that subsume classical temporal logics and allow the measurement of interesting quantitative phenomena were introduced. We show how a powerful quantitative logic, the quantitative mu-calculus, can be model checked with arbitrary precision on initialised linear hybrid systems. To this end, we develop new techniques for the discretisation of continuous state spaces based on a special class of strategies in model-checking games and present a reduction to a class of counter parity games.Comment: LMCS submissio

    Model Checking Games for the Quantitative mu-Calculus

    Full text link
    We investigate quantitative extensions of modal logic and the modal mu-calculus, and study the question whether the tight connection between logic and games can be lifted from the qualitative logics to their quantitative counterparts. It turns out that, if the quantitative mu-calculus is defined in an appropriate way respecting the duality properties between the logical operators, then its model checking problem can indeed be characterised by a quantitative variant of parity games. However, these quantitative games have quite different properties than their classical counterparts, in particular they are, in general, not positionally determined. The correspondence between the logic and the games goes both ways: the value of a formula on a quantitative transition system coincides with the value of the associated quantitative game, and conversely, the values of quantitative parity games are definable in the quantitative mu-calculus

    Model-checking Quantitative Alternating-time Temporal Logic on One-counter Game Models

    Full text link
    We consider quantitative extensions of the alternating-time temporal logics ATL/ATLs called quantitative alternating-time temporal logics (QATL/QATLs) in which the value of a counter can be compared to constants using equality, inequality and modulo constraints. We interpret these logics in one-counter game models which are infinite duration games played on finite control graphs where each transition can increase or decrease the value of an unbounded counter. That is, the state-space of these games are, generally, infinite. We consider the model-checking problem of the logics QATL and QATLs on one-counter game models with VASS semantics for which we develop algorithms and provide matching lower bounds. Our algorithms are based on reductions of the model-checking problems to model-checking games. This approach makes it quite simple for us to deal with extensions of the logical languages as well as the infinite state spaces. The framework generalizes on one hand qualitative problems such as ATL/ATLs model-checking of finite-state systems, model-checking of the branching-time temporal logics CTL and CTLs on one-counter processes and the realizability problem of LTL specifications. On the other hand the model-checking problem for QATL/QATLs generalizes quantitative problems such as the fixed-initial credit problem for energy games (in the case of QATL) and energy parity games (in the case of QATLs). Our results are positive as we show that the generalizations are not too costly with respect to complexity. As a byproduct we obtain new results on the complexity of model-checking CTLs in one-counter processes and show that deciding the winner in one-counter games with LTL objectives is 2ExpSpace-complete.Comment: 22 pages, 12 figure

    Efficient computation of exact solutions for quantitative model checking

    Get PDF
    Quantitative model checkers for Markov Decision Processes typically use finite-precision arithmetic. If all the coefficients in the process are rational numbers, then the model checking results are rational, and so they can be computed exactly. However, exact techniques are generally too expensive or limited in scalability. In this paper we propose a method for obtaining exact results starting from an approximated solution in finite-precision arithmetic. The input of the method is a description of a scheduler, which can be obtained by a model checker using finite precision. Given a scheduler, we show how to obtain a corresponding basis in a linear-programming problem, in such a way that the basis is optimal whenever the scheduler attains the worst-case probability. This correspondence is already known for discounted MDPs, we show how to apply it in the undiscounted case provided that some preprocessing is done. Using the correspondence, the linear-programming problem can be solved in exact arithmetic starting from the basis obtained. As a consequence, the method finds the worst-case probability even if the scheduler provided by the model checker was not optimal. In our experiments, the calculation of exact solutions from a candidate scheduler is significantly faster than the calculation using the simplex method under exact arithmetic starting from a default basis.Comment: In Proceedings QAPL 2012, arXiv:1207.055

    Abstract Model Counting: A Novel Approach for Quantification of Information Leaks

    Get PDF
    acmid: 2590328 keywords: model checking, quantitative information flow, satisfiability modulo theories, symbolic execution location: Kyoto, Japan numpages: 10acmid: 2590328 keywords: model checking, quantitative information flow, satisfiability modulo theories, symbolic execution location: Kyoto, Japan numpages: 10acmid: 2590328 keywords: model checking, quantitative information flow, satisfiability modulo theories, symbolic execution location: Kyoto, Japan numpages: 10We present a novel method for Quantitative Information Flow analysis. We show how the problem of computing information leakage can be viewed as an extension of the Satisfiability Modulo Theories (SMT) problem. This view enables us to develop a framework for QIF analysis based on the framework DPLL(T) used in SMT solvers. We then show that the methodology of Symbolic Execution (SE) also fits our framework. Based on these ideas, we build two QIF analysis tools: the first one employs CBMC, a bounded model checker for ANSI C, and the second one is built on top of Symbolic PathFinder, a Symbolic Executor for Java. We use these tools to quantify leaks in industrial code such as C programs from the Linux kernel, a Java tax program from the European project HATS, and anonymity protocol
    • 

    corecore