9,934 research outputs found

    Quantitative Analysis of Saliency Models

    Full text link
    Previous saliency detection research required the reader to evaluate performance qualitatively, based on renderings of saliency maps on a few shapes. This qualitative approach meant it was unclear which saliency models were better, or how well they compared to human perception. This paper provides a quantitative evaluation framework that addresses this issue. In the first quantitative analysis of 3D computational saliency models, we evaluate four computational saliency models and two baseline models against ground-truth saliency collected in previous work.Comment: 10 page

    An extensible benchmark and tooling for comparing reverse engineering approaches

    Get PDF
    Various tools exist to reverse engineer software source code and generate design information, such as UML projections. Each has specific strengths and weaknesses, however no standardised benchmark exists that can be used to evaluate and compare their performance and effectiveness in a systematic manner. To facilitate such comparison in this paper we introduce the Reverse Engineering to Design Benchmark (RED-BM), which consists of a comprehensive set of Java-based targets for reverse engineering and a formal set of performance measures with which tools and approaches can be analysed and ranked. When used to evaluate 12 industry standard tools performance figures range from 8.82\% to 100\% demonstrating the ability of the benchmark to differentiate between tools. To aid the comparison, analysis and further use of reverse engineering XMI output we have developed a parser which can interpret the XMI output format of the most commonly used reverse engineering applications, and is used in a number of tools

    PowerPack: Energy Profiling and Analysis of High-Performance Systems and Applications

    Get PDF
    Energy efficiency is a major concern in modern high-performance computing system design. In the past few years, there has been mounting evidence that power usage limits system scale and computing density, and thus, ultimately system performance. However, despite the impact of power and energy on the computer systems community, few studies provide insight to where and how power is consumed on high-performance systems and applications. In previous work, we designed a framework called PowerPack that was the first tool to isolate the power consumption of devices including disks, memory, NICs, and processors in a high-performance cluster and correlate these measurements to application functions. In this work, we extend our framework to support systems with multicore, multiprocessor-based nodes, and then provide in-depth analyses of the energy consumption of parallel applications on clusters of these systems. These analyses include the impacts of chip multiprocessing on power and energy efficiency, and its interaction with application executions. In addition, we use PowerPack to study the power dynamics and energy efficiencies of dynamic voltage and frequency scaling (DVFS) techniques on clusters. Our experiments reveal conclusively how intelligent DVFS scheduling can enhance system energy efficiency while maintaining performance

    Quantitative Performance Analysis of the SPEC OMPM2001 Benchmarks

    Get PDF
    • …
    corecore