
An Extensible Benchmark and Tooling for
Comparing Reverse Engineering Approaches

David Cutting and Joost Noppen

School of Computing Science
University of East Anglia

Norwich, Norfolk, UK
Email: {david.cutting,j.noppen}@uea.ac.uk

Abstract—Various tools exist to reverse engineer software source
code and generate design information, such as UML projections.
Each has specific strengths and weaknesses, however, no stan-
dardised benchmark exists that can be used to evaluate and
compare their performance and effectiveness in a systematic
manner. To facilitate such comparison in this paper we introduce
the Reverse Engineering to Design Benchmark (RED-BM), which
consists of a comprehensive set of Java-based targets for reverse
engineering and a formal set of performance measures with which
tools and approaches can be analysed and ranked. When used
to evaluate 12 industry standard tools performance figures range
from 8.82% to 100% demonstrating the ability of the benchmark
to differentiate between tools. To aid the comparison, analysis and
further use of reverse engineering XMI output we have developed
a parser which can interpret the XMI output format of the most
commonly used reverse engineering applications, and is used in
a number of tools.

Keywords–Reverse Engineering; Benchmarking; Tool Compar-

ison; Tool Support; Extensible Methods; XMI; Software Compre-

hension; UML; UML Reconstruction.

I. INTRODUCTION

Reverse engineering is concerned with aiding the com-
prehensibility and understanding of existing software systems.
With ever growing numbers of valuable but poorly documented
legacy codebases within organisations reverse engineering has
become increasingly important. As explored in our previous
work [1], there are a wide number of reverse engineering
techniques, which offer a variety in their focus from Unified
Modelling Language (UML) projection to specific pattern
recognition [2][3][4][5].

However, it is difficult to compare the effectiveness of
reverse engineering techniques against each other, as no stan-
dard set of targets exist to support this goal over multiple
approaches, a problem also found in the verification and
validation of new tools and techniques [6]. Any performance
evaluations that do exist are specific to an approach or tech-
nique. Therefore, it is impossible to gain a comparative un-
derstanding of performance for a range of tasks, or to validate
new techniques or approaches. Therefore, this paper introduces
a benchmark of such targets, the Reverse Engineering to
Design Benchmark (RED-BM), created in order to compare
and validate existing and new tools for reverse engineering.

Therefore, our goals are to:

• Create a benchmark suitable for empirical comparison
of reverse engineering tools

• Apply this benchmark to current tools and evaluate
the result, and their performance

• Make the benchmark extensible to support further
approaches

• Provide support for extensibility through the means of
data exchange between implementations

The benchmark described in this article builds on and ex-
tends previous work [1], including greater details and specifics
on an inherent extensibility mechanism with an example.

The intent of the benchmark, in addition to ranking of
current reverse engineering approaches, is to support further
extensibility in a generic and easily accessible manner. To
achieve this, a number of tools have been developed and
provided which aid in the open analysis and exchange of
reverse engineering output.

The remainder of this paper is organised as follows: in
Section II, we introduce our benchmark before introducing the
target artefacts (Section II-A) provided. Section II-B covers the
performance measurements used, with Section II-C detailing
how complexity is broken down for granular measurement.
Extensible features of the benchmark are demonstrated in
Section III, specifically the definition of new measurements
(Section III-A) and use of reverse engineering output for data
exchange (Section III-B). Section IV details the toolchain
support for the benchmark. In Section V, the benchmark is
applied against a number of industry standard tools with an
evaluation of these results in Section VI and a discussion in
Section VII. Related work is covered in Section VIII and the
final Section IX draws a conclusion and identifies our future
direction for research.

II. THE REVERSE ENGINEERING TO DESIGN
BENCHMARK (RED-BM)

RED-BM facilitates the analysis of reverse engineering
approaches based on their ability to reconstruct class diagrams
of legacy software systems. This is accomplished by offering
the source code of projects of differing size and complexity as
well as a number of reference UML models. The benchmark
provides a set of measures that facilitate the comparison of
reverse engineering results, for example class detection, to
reference models including a gold standard and a number of
meta-tools to aid in the analysis of tool outputs. The gold

standard is a set of manually verified correct UML data, in
whole or in part, for the artefacts.

115

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of East Anglia digital repository

https://core.ac.uk/display/41989379?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The benchmark allows ranking of reverse engineering
approaches by means of an overall performance measure that
combines the performance of an approach with respect to a
number of criteria, such as successful class or relationship
detection. This overall measure is designed to be extensible
through the addition of further individual measures to facilitate
specific domains and problems. In addition, the benchmark
provides analysis results and a ranking for a set of popular
reverse engineering tools which can be used as a yardstick
for new approaches. Full details, models, targets, results as
well as a full description of the measurement processes used
can be found at [7]. Although based on Java source code, the
core concepts and measurements, such as detection of classes,
relationships, and containers, are applicable to any object-
oriented language and the benchmark could be extended to
include other languages.

A. Target Artefacts

Our benchmark consists of a number of target software
artefacts that originate from software packages of varying
size and complexity. These include projects such as Eclipse,
an open-source integrated development environment, and Li-
breOffice, a large popular open-source fully-featured office
package, as well as some smaller custom examples.

Artefacts were chosen for inclusion on the basis that they
provided a range of complexity in terms of lines of code and
class counts, used a number of different frameworks, offered
some pre-existing design information and were freely available
for distribution (under an open-source licence). Two artefacts
(ASCII Art Examples A and B) were created specifically for
inclusion as a baseline offering a very simple starting point
with full UML design and use of design patterns.

Cactus is also included as, although depreciated by the
Apache Foundation, it has a number of existing UML diagrams
and makes use of a wide number of Java frameworks. Eclipse
was included primarily owing to a very large codebase which
contains a varied use of techniques. The large codebase of
Eclipse also provides for the creation of additional targets
without incorporating new projects. JHotDraw has good UML
documentation available both from the project itself and some
third-party academic projects which sought to deconstruct it
manually to UML. As with Eclipse, Libre Office provides a
large set of code covering different frameworks and providing
for more targets if required.

The benchmark artefact targets represent a range of com-
plexity and architectural styles from standard Java source
with simple through to high complexity targets using different
paradigms, such as design patterns and presentation tech-
niques. This enables a graduated validation of tools, as well as
a progressive complexity for any new tools to test and assess
their capabilities. The complete range of artefacts is shown in
Table I, where large projects are broken down into constituent
components. In addition, the table contains statistics on the
number of classes, sub-classes, interfaces and lines of code
for each of the artefacts. Also, included within RED-BM are
a set of gold standards for class and relationship detection
against which tool output is measured. These standards were
created by manual analysis supported by tools, as described in
Section IV.

TABLE I. SOFTWARE ARTEFACT TARGETS OF THE RED-BM

Software
Target Artefact Main

Classes
Sub
Classes

Inter-
faces

Lines of
Code

ASCII Art Example A
Example A 7 0 0 119
ASCII Art Example B
Example B 10 0 0 124
Eclipse
org.eclipse.core.
commands

48 1 29 3403

org.eclipse.ui.ide 33 2 6 3949
Jakarta Cactus
org.apache.cactus 85 6 18 4563
JHotDraw
org.jhotdraw.app 60 6 6 5119
org.jhotdraw.color 30 7 4 3267
org.jhotdraw.draw 174 51 27 19830
org.jhotdraw.geom 12 8 0 2802
org.jhotdraw.gui 81 29 8 8758
org.jhotdraw.io 3 2 0 1250
org.jhotdraw.xml 10 0 4 1155
Libre Office
complex.writer 11 33 0 4251
org.openoffice.java.
accessibility.logging

3 0 0 287

org.openoffice.java.
accessibility

44 63 1 5749

All bundled code
(sw + accessibility)

241 173 33 39896

B. Measuring Performance

RED-BM enables the systematic comparison and ranking
of reverse engineering approaches by defining a set of perfor-

mance measures. These measures differentiate the performance
of reverse engineering approaches and are based on accepted
quality measures, such as successful detection of classes and
packages [8][9]. Although such functionality would be ex-
pected in reverse engineering tools, these measures provide a
basic foundation for measurement to be built on, and represent
the most common requirement in reverse engineering for
detection of structural elements. Further, as seen in Section VI,
these measures are alone capable of differentiating wide ranges
of tool performance. The performance of tools with respect to a
particular measure is expressed as the fraction of data that has
been successfully captured. Therefore, these measures are built
around determining the recall factor, e.g., how complete is the
recovered set. Individual measures are then used in conjunction
to form a weighted compound measure of overall performance.
In our benchmark, we define three base measures to assess the
performance of reverse engineering tools and approaches:

• Cl: The fraction of classes successfully detected

• Sub: The fraction of sub-packages successfully de-
tected

• Rel: The fraction of relationships successfully de-
tected (successful in that a relationship was detected
and is of the correct type)

Each of these measures are functions that take a system to
be reverse engineered s and a reverse engineering result r (i.e.,
a structural UML class diagram) that is produced by a reverse
engineering approach when applied to s. The formal definition
of our three base measures are as follows:

116

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Cl(s,r) =
C(r)

C(s)
, Sub(s,r) =

S(r)

S(s)
, Rel(s,r) =

R(r)

R(s)
(1)

where
C(x) is the number of correct classes in x

S(x) is the number of correct (sub-)packages in x

R(x) is the number of correct relations in x

The overall performance P of a reverse engineering ap-
proach for the benchmark is a combination of these perfor-
mance measures. The results of the measures are combined
by means of a weighted sum, which allows users of the
benchmark to adjust the relative importance of, e.g., class
or relation identification. We define the overall performance
of a reverse engineering approach that produces a reverse
engineering result r for a system s as follows:

P(s,r) =
wClCl(s, r) + wSubSub(s, r) + wRelRel

wCl + wSub + wRel
(2)

In this function, wCl, wSub and wRel are weightings that
can be used to express the importance of the performance in
detecting classes, (sub-)packages and relations, respectively.
The benchmark results presented in this article all assume that
these are of equal importance: wCl = wSub = wRel = 1,
unless mentioned otherwise.

C. Complexity Categories

To further refine the evaluation of the reverse engineering
capabilities of approaches we divide the artefacts of the bench-
mark into three categories of increasing complexity; C1, C2
and C3. These categories allow for a more granular analysis
of tool performance at different levels of complexity. For
example, a tool can be initially validated against the lowest
complexity in an efficient manner only being validated against
higher complexity artefacts at a later stage. Our complexity
classes have the following boundaries:

• C1: 0 number of classes 25

• C2: 26 number of classes 200

• C3: 201 number of classes

The complexity categories are based on the number of
classes contained in the target artefact. As source code grows
in size both in the lines of code and the number of classes
it becomes inherently more complex and so more difficult
to analyse [10], [11]. While a higher number of classes
does not necessarily equate to a system that is harder to
reverse engineer, we have chosen this metric as it provides
a quantitative measure without subjective judgement.

The bounds for these categories were chosen as results
demonstrated a noticeable drop-off in detection rates observed
in the tools, as can be seen in Section VI. However, any
user of the benchmark can introduce additional categories
and relate additional performance measures to these categories
to accommodate for large scale industrial software or more
specific attributes such as design patterns. The extensibility
aspect of our work is explained in more detail in Section III.

III. EXTENSIBILITY OF THE BENCHMARK

A. Extensibility of Measurements

RED-BM’s included performance measures provide a solid
foundation to evaluate and compare current standards of re-
verse engineering. To accommodate the continual advance-
ments in this field we have made the performance measure
aspect of our benchmark extensible. Any user of the bench-
mark can introduce new performance measures, such as the
fraction of successfully detected design patterns in a given code
base. Once a gold standard has been determined for a specific
detection within the artefacts it can be tested against tool output
(as explained in Section II-C for the initial criteria). With these
new measures the performance of approaches can be defined
for specific reverse engineering areas. In a generalised fashion
we define a performance measure to be a function M that
maps a system s and its reverse engineering result r to the
domain [0..1], where 0 means the worst and 1 the best possible
performance.

In addition to providing means for creating new
performance measures, we provide the possibility to create
new compound performance measures (i.e., measures that are
compiled from a set of individual performance measures).
Formally, we define a compound measure to be a function C

that maps a system s and its reverse engineering result r to
the domain [0..1], where 0 means the worst and 1 the best
possible performance:

C(s,r) =

nP
i=1

wiMi(s, r)

nP
i=1

wi

(3)

In this expression wi is the weighting that determines the
importance of the individual performance measure i. Note
that the performance measures we introduced in Section II-B
conform to this definition and, therefore, can be seen as an
example of the extensibility of the benchmark.

To further illustrate how researchers and practitioners can
use this mechanism to specialise the application of RED-
BM we create a performance measure that acknowledges the
capability of an approach to detect design patterns during
reverse engineering. This is an active research field for which
to the best of our knowledge a specialised benchmark is not
available.

According to literature the detection of creational and
structural design patterns is easier than behavioural design
patterns [12]. Therefore, we introduce two new performance
measures Db for the successful identification of creational
and structural design patterns(Dcs), and behavioural design
patterns (Db) for a system s and reverse engineering result
r:

Dcs(p, s) =
Pc(r) + Ps(r)

Pc(s) + Ps(s)
, Db(p, s) =

Pb(r)

Pb(s)
(4)

where

Pc(x) is the number of creational design patterns in x

117

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II. Simplified Comparative XMI Output from Tools

ArgoUML Enterprise Architect Astah Professional

<UML:Class <packagedElement <UML:Class
xmi.id = “. . . ” xmi:id = “. . . ” xmi.id = “. . . ”
name = “Circle” name = “Circle” name = “Circle”
visibility = “package” visibility = “package” version = “0”
. . .> . . .> . . .>

<UML:GeneralizableElement.generalization> <ownedOperation <UML:ModelElement.namespace>
<UML:Generalization xmi.id = “. . . ” <UML:Namespace

xmi.idref = “. . . ” /> name = “Circle” xmi.idred = “. . . ”
</UML:GeneralizableElement.generalization> visibility = “public” . . .> </UML:Namespace
.
<UML:Classifier.feature <generalization <UML:ModelElement.visibility
<UML:Operation xmi:type = “uml:Generalization” xmi.value = “package” />

xmi.id = “. . . ” xmi:id = “. . . ” . . .
name = “Circle” general = “. . . ” > <UML:GeneralizableElement.generalization>
visibility = “public” . . .> </packagedElement> xmi.idref = “. . . ” />

</UML:Class> xmi.idref = “. . . ” />
</UML:GeneralizableElement.generalization>

Ps(x) is the number of structural design patterns in x

Pb(x) is the number of behavioural design patterns in x

In addition to these performance measures we introduce
additional measures that demonstrate how to consider negative
influences on performance. In this case, we consider falsely
identified creational and structural design patterns (Ecs) and
behavioural design patterns (Eb) a reverse engineering ap-
proach produces as part of the overall result:

Ecs(p, r) = 1� Fc(r) + Fs(r)

Pc(r) + Ps(r) + Fc(r) + Fs(r)
(5)

Eb(p, r) = 1� Fb(r)

Pb(r) + Fb(r)
(6)

where

Fc(x) is the number of falsely identified creational design
patterns in x

Fs(x) is the number of falsely identified structural design
patterns in x

Fb(x) is the number of falsely identified behavioural
design patterns in x

These individual performance measures for design patterns
can now be combined into a single compound performance
measure DPR for design pattern recognition in system p with
reverse engineering result r that includes weightings for each
individual component:

DPR(p,r) =
wDcsDcs + wDbDb + wFcsFcs + wFbFb

wDcs + wDb + wFcs + wFb

(7)

B. Extensibility in Data Exchange

Another prominent aspect that needs to be addressed for
a reusable and extensible benchmark is the gap that exists
between input and output formats of various reverse engineer-
ing tools. Indeed, to make further use of reverse engineering
output, for example, between tools or for re-projection of UML
there is an Object Management Group (OMG) standard, the
XML Metadata Interchange (XMI) format [13]. XMI is a

highly customisable and extensible format with many differ-
ent interpretations. Therefore, in practice, tools have a wide
variation in their XMI output and exchange between reverse
engineering tools, useful for interactive projection between
tools without repetition of the reverse engineering process, is
usually impossible. This variance in XMI format also hinders
use of XMI data for further analysis outside of a reverse
engineering tool, as individual tools are required for each XMI
variation.

During the creation of the reverse engineering benchmark,
two tools were developed, which could analyse Java source
code identifying contained classes, and then, check for the
presence of these classes within XMI output.

However, the need remained to make more generalised
use of reverse engineering output XMI, beyond this specialist
utility. Our research required the ability to load XMI into a
memory model and manipulate and/or compare it. Additionally
it was foreseen that future, as yet not specifically defined, uses
could be found for programmatic access to reverse engineering
output.

One of the challenges in making automated programmatic
use of XMI output from different tools was the wide variety of
output format. This is due to the wide range of customisation
possibilities in the XMI format itself [13], it’s parent Meta-
Object Format (MOF; [14]), and the representation of UML
elements within XMI [15]. Even the most basic structural ele-
ments such as classes, and relationships such as generalisation
(inheritance) are represented in very different ways.

Such variation is shown in three XML listings showing par-
tial example output for a class representation from ArgoUML,
Enterprise Architect and Astah Professional (Table II).

Further work based upon the identification and analysis of
variances within different reverse engineering tools’ output,
along with a desire to be able to integrate such output within
more detailed analysis, led to the creation of a generic XMI
parser (Section III-C). The parser solves the problem of XMI
accessibility through generic use and abstract representation
of structural data contained in XMI files of multiple formats.
This parser is used by further tools for structural analysis or
comparison as well as automated UML re-projection within
Eclipse.

118

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

C. XMI Parser

The XMI Parser is a generic component designed for
integration within other projects consisting of a Java package.
The parser is capable of reading an XMI file, of most common
output formats, recovering class and relationship information
in a structured form. Data access classes are provided, which
contain the loaded structural information, and can be accessed
directly or recursively by third-party tools. As a self-contained
utility package, the XMI Parser can be developed in isolation
to tools making use of it and be incorporated into tools when
required. A number of tools have been and continue to be
developed within UEA to make use of reverse engineering
information through implementation of the XMI Parser.

1) XMI Analyser: XMI Analyser uses the generic XMI
Parser to load one or more XMI files which can then be
analysed. Features include a GUI-based explorer showing the
structure of the software and items linked through relation-
ships. A batch mode can be used from the command line for
automated loading of XMI files and analysis. XMI Analyser
is primarily used for testing revisions to the XMI Parser, as an
example application and also for the easy viewing of structural
information contained within XMI, as shown in Figure 1.

Figure 1. XMI Analyser Structure Display

XMI Analyser is also capable of comparison between mul-
tiple XMI files generating a report highlighting any differences
found. This analysis can inform decisions as to the accuracy of
the reverse engineering data represented in reverse engineering
output.

2) Eclipse UMLet Integration: One of our desired out-
comes was the ability to re-project UML outside of a specific
reverse engineering tool. Such a capability would not only
allow for detailed UML projections without access to the
reverse engineering tool, but also programatic projection, for
example in an interactive form. The Eclipse UMLet Integra-
tion, the interface of which is shown in Figure 2, is in the
form of a plugin for the Eclipse Framework. The XMI Parser
and supporting interfaces are included along with a graphical
window-based interface and a visualisation component. This
tool can load one or more XMI files and associate them with
open or new UMLet documents. These documents can then be
used to automatically generate a UML class diagram projection
containing the structural elements contained within the XMI.
An example of a re-projection within UMLet can be seen in
Figure 3; please note, however, owing to a limitation in our
UMLet API relationships are recovered but not shown.

3) Java Code Relation Analysis (jcRelationAnalysis): The
jcRelationAnalysis tool is a generic utility designed to analyse
and comprehend the relationship between elements (classes)
in Java source code. This is accomplished by first building a
structural picture of the inter-relationships between elements,
such as classes, contained within a source code corpus, initially
from reverse engineering output, for which the XMI Parser

Figure 2. Eclipse Visualisation Interface

Figure 3. Eclipse UMLet Re-Projection of UML

is used. The ultimate intention of the tool is to work with
combinational data from a number of different sources to
compare or augment relationship information. This tool is now
being used and further developed within our current and future
research (Section IX).

IV. BENCHMARK TOOLCHAIN

The generic stages required to perform benchmarking are
shown in Figure 4; the source code must be extracted from
the project, the structural elements contained within the source
code extracted directly and also by a reverse engineering tool,
before the outputs are compared.

Figure 4. RED-BM Generic Process

To facilitate effective analysis and ease reproduction or
repetition of the results a toolchain was developed for use
within RED-BM, consisting of two main components (jcAnal-

ysis and xmiClassFinder), combined to measure the rate of
class detection. The steps followed in the application of the
benchmark are shown in Figure 5 with the developed tools
highlighted.

4) jcAnalysis: This tool recurses through a Java source
tree analysing each file in turn to identify the package along
with contained classes (primary and nested classes). The list of
classes is then output in an intermediate XML format (DMI).
For every target artefact, jcAnalysis’ output was compared
against a number of other source code analysis utilities,
including within Eclipse, to verify the class counts. A manual

119

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. RED-BM Process with Toolchain Elements Highlighted

analysis was also performed on sections of source code to
verify naming. Once verified, this output then constitutes the
gold standard for class detection against which tool output is
compared.

5) xmiClassFinder: This tool analyses an XMI file from a
reverse engineering tool and attempts to simply identify all the
classes contained within the XMI output (the classes detected
by the reverse engineering tool in question). The classes
contained within the XMI can be automatically compared
to input from jcAnalysis (in DMI format) for performance
(classes correctly detected) to be measured.

Once an analysis had been completed, a manual search
was then performed on the source code, in XMI output, and
within the reverse engineering tool itself, to try and locate
classes determined as “missing” by the toolchain. This step
also served to validate the toolchain, in that classes identified
as “missing” were not then found to be actually present in the
reverse engineering output.

V. APPLICATION OF THE BENCHMARK

To analyse the effectiveness of our benchmark, we have
applied a range of commercial and open source reverse en-
gineering tools (shown in Table III) to each target artefact.
Each of the tools is used to analyse target source code,
generate UML class diagram projections (if the tool supports
such projections) and export standardised XMI data files.
Although the source code target artefacts used for testing are
broken down into the package level for analysis, the reverse
engineering process is run on the full project source code
to facilitate package identification. The output produced by
each of the tools is subsequently analysed and compared to
the generated gold standard using a benchmark toolchain we
specifically created for comparison of class detection rates
(see Section IV). Finally, we perform a manual consistency
between the standard tool output and XMI produced to identify
and correct any inconsistencies where a tool had detected an
element but not represented it within the generated XMI. For
this analysis we used weightings as stated, where all types of
elements are of equal weight (wCl = wSub = wRel = 1), and
categories of increased complexity have higher weight in the
compound measure (wC1 = 1, wC2 = 1.5, wC3 = 2).

When analysing the results a wide range of variety was
observed even for simple targets. Example A, one of the
simplest targets with just 7 classes and two types of relation-
ship, as depicted in Figure 6, demonstrates this variety. It can
be seen in Figure 7 that Software Ideas Modeller failed to
identify and display any relationship between classes. Other
tools such as ArgoUML [16] (Figure 8) were very successful
in reconstructing an accurate class diagram when compared to
the original reference documentation.

TABLE III. LIST OF TOOLS AND VERSIONS FOR USE IN EVALUATION

Tool Name
(Name Used)

Version Used (OS)
Licence

ArgoUML 0.34 (Linux)
Freeware

Change Vision Astah Professional
(Astah Professional)

6.6.4 (Linux)
Commercial

BOUML 6.3 (Linux)
Commercial

Sparx Systems Enterprise Architect
(Enterprise Architect)

10.0 (Windows)
Commercial

IBM Rational Rhapsody Developer for Java
(Rational Rhapsody)

8.0 (Windows)
Commercial

NoMagic Magicdraw UML
(MagicDraw UML)

14.0.4 Beta (Windows)
Commercial

Modeliosoft Modelio
(Modelio)

2.2.1 (Windows)
Commercial

Software Ideas Modeller 6.01.4845.43166
(Windows)
Commercial

StarUML 5.0.2.1570 (Windows)
Freeware

Umbrello UML Modeller
(Umbrello)

2.3.4 (Linux)
Freeware

Visual Paradigm for UML Professional
(Visual Paradigm)

10.1 (Windows)
Commercial

IBM Rational Rose Professional J Edition
(Rational Rose)

7.0.0.0 (Windows)
Commercial

Figure 6. Reference Class Diagram Design for ASCII Art Example A

Figure 7. ASCII Art Example A Output for Software Ideas Modeller

Figure 8. ASCII Art Example A Output for ArgoUML

120

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 9. org.jhotdraw.io Output from Astah Professional (reconstructed)

Figure 10. org.jhotdraw.io Output from Rational Rhapsody (reconstructed)

Figure 11. org.jhotdraw.io Output from ArgoUML

Another aspect in which difference is obvious relates to
tool presentation, particularly when the target artefact is a
Java package, which contains sub-packages nested to multiple
levels. Some of the different ways tools visualise this, even
for a single nesting level, is shown by the org.jhotdraw.io

target. Tool output varies from a simple display of classes and
packages at the top level (ArgoUML, Figure 11), a partial
decomposition of top-level sub-packages showing contained
constituent items (Rational Rhapsody, Figure 10), to a full
deconstruction showing all constituent parts and relationships,
but without indication of sub-package containment (Astah
Professional, Figure 9).

In stark contrast to tools which performed well (e.g.,
Rational Rhapsody and ArgoUML) a number of tools failed
to complete reverse engineering runs of benchmark artefacts
and even crashed repeatedly during this procedure. The result
of which is that they are classified as detecting 0 classes for
those target artefacts. While some tools failed to output valid
or complete XMI data, a hindrance to their usability and ease
of analysis, this has not affected their performance evaluation

TABLE IV. CRITERIA RESULTS BY TOOL

Criterion >
_ Tool

CD
%

C1
%

C2
%

C3
%

CM
%

ArgoUML 100 98.15 75 100 88.27
Astah Professional 100 97.62 100 100 99.47
BOUML 100 92.59 75 100 86.42
Enterprise Architect 100 66.67 62.22 100 80.00
Rational Rhapsody 100 100 100 100 100.00
MagicDraw UML 100 98.15 100 100 99.38
Modelio 47.33 95.92 29.66 12.02 36.54
Software Ideas Modeller 86.41 62.15 41.48 46.04 48.10
StarUML 47.11 47.22 23.47 31.16 32.17
Umbrello 9.2 35.79 5.95 0 9.94
Visual Paradigm 12.42 38.18 51.68 16.67 33.12
Rational Rose 8.69 38.05 1.09 0 8.82

as their performance could be based on our manual analysis
of their UML projection.

VI. EVALUATION OF ANALYSIS RESULTS

For the analysis of the results produced by the reverse en-
gineering tools, we use a standard class detection performance
measure for all targets (CD, formula (1)). Artefact results are
broken into complexity categories as defined in Section II-C.

Finally, we use the compound measure CM (as defined in
Section II-B, formula (3)), which contains the three complexity
measures with weighting as follows: wC1 = 1, wC2 =
1.5, wC3 = 2; giving a higher weighting to target artefacts
that contain more lines of code.

Using these performance measures a wide range of results
between the tools used for analysis can be seen. Some tools
offer extremely poor performance, such as Rational Rose and
Umbrello, as they crashed or reported errors during reverse
engineering or UML projection, failing to detect or display
classes and relationships entirely for some targets. As a general
trend, the percentage of classes detected on average declined as
the size of the project source code increased. As the number of
classes detected varied significantly in different tools (Figure
12) so did the amount of detected relationships, to a degree
this can be expected as if a tool fails to find classes it would
also fail to find relationships between these missing classes. In
this figure, the difference between the standard class detection
measure CD and the compound measure CM becomes clear

121

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 12. Overall Class Detection (CD) and Compound Measure (CM) Performance by Tool

as, for example, ArgoUML was very strong in class detection
but performed at a slightly lower level on relation detection,
which is explicitly considered in the compound measure. It
is also interesting to note that Visual Paradigm offered better
performance for the compound measure as opposed to class
detection highlighting its superior ability to deal with relations
and packages as compared to class detection.

Overall, our benchmark identified IBM Rational Rhapsody
as the best performer as it achieved the maximum score for
our compound measure (100%) with two other tools, Astah
Professional and MagicDraw UML coming in a close second
scoring in excess of 99%. As the poorest performers our
work highlighted Umbrello, Visual Paradigm and notably IBM
Rational Rose which scored the lowest with a compound
measure of just 8.82% having only detected 8.69% of classes.
A detailed breakdown of the performance of the tools for
individual targets is provided with the benchmark [7].

This range of performance scores clearly shows a very
marked differentiation between tools. At the top end some
six tools score 80% or above in the compound measure, with
three over 90%. In most a clear drop-off in detection rates are
seen in the complexity measures as the size and complexity of
the targets increase with an average measure score of 73.47%,
58.70% and 54.66% through the complexity categories C1, C2
and C3, respectively (Table IV and Figure 13).

There is a noticeable distribution of tool performance for
the compound measure; five score under 40%, six score in
excess of 80% and only one lies in the middle (48.1%).

It is interesting to note that of the top four performing tools
three are commercial with ArgoUML, a freeware tool, scoring
88.27%. This makes ArgoUML a significantly better performer
than well-known commercial solutions such Software Ideas
Modeller and Rational Rose. For complete results, targets
and reference documentation for this analysis please visit the
benchmark website [7].

Although outside the scope of this paper, in general we
found that the workflow processes of some tools were much

more straightforward than others. For example, Change Vision
Astah Professional and IBM Rational Rhapsody provided for
straightforward generation of diagrams with configurable detail
(such as optional inclusion of members and properties within
class diagrams) either during or immediately after reverse
engineering. On the other hand, tools such as BOUML and
IBM Rational Rose required considerable manual effort in
the generation of class diagrams with the need for individual
classes to be placed in the diagram although relationships
between classes were automatically generated. For a number
of tools the lack of usability was further aggravated as their
reverse engineering process repeatedly crashed or returned
numerous errors on perfectly valid and compilable source code.

VII. DISCUSSION

In the previous sections, we have demonstrated the abil-
ity of RED-BM to assess and rank reverse engineering ap-
proaches. In the following, we discuss the accuracy and valid-
ity of our approach. The targets in RED-BM currently range
in size from approximately 100 to 40,000 lines of code. It can
be argued that this is not representative of industrial software
systems that can consist of millions of lines of code. In
practice, however, reverse engineering activities tend to focus
on specific areas of limited size rather than reconstructing the
entire design of a very large system in a single pass [3] making
our targets representative for a typical application scenario.
This is supported by the capability of our benchmark to provide
targets diverse enough to be able to classify the performance
of a range of industry standard tools.

RED-BM currently supports the evaluation of reverse en-
gineering approaches that focus on traditional design elements
such as classes, packages and relations. It is possible that novel
reverse engineering approaches will be introduced that focus
on more complex design elements such as design patterns,
traceability links, etc., and are beyond the current evaluation
capabilities of RED-BM. However, the evaluation capabilities
of the benchmark can be improved by using the extension

122

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 13. Tool Performance by Complexity Criteria

mechanism illustrated in Section III. Using this mechanism
new performance criteria and measures can be defined that
explicitly take more advanced properties of reverse engineering
approaches into account.

A final point we would like to highlight is that the effort
involved in evaluating tools and approaches requires the ability
to efficiently compare their outputs. While there is a standard-
ised output format available in the shape of XML Metadata
Interchange (XMI) files, a wide variety of implementations
exist which makes its use impractical. This can severely inhibit
the application of the benchmark. To accommodate this we
provide a number of utilities which can be used to a) analyse
Java source code, b) analyse XMI output and c) identify
components missing from the XMI output, which were found
in the source code. Use of these utilities drastically reduces the
time required to compare tool performance in terms of class,
package and relation detection.

VIII. RELATED WORK

The use of benchmarks as a means to provide a stan-
dardised base for empirical comparison is not new and the
technique is used widely in general science and in computer
science specifically. Recent examples where benchmarks have
been successfully used to provide meaningful and repeatable
standards include comparison of function call overheads be-
tween programming languages [17], mathematical 3D perfor-
mance between Java and C++ [18], and embedded file systems
[19]. Our benchmark provides the ability for such meaningful
and repeatable standard comparisons in the area of reverse
engineering.

These previous benchmarks and others which have been
reviewed (such as [20], [21], [5], and [22]) share many
common features in their structure and presentation which
have been incorporated into this benchmark and paper. Such is
the perceived importance of benchmarks to support empirical
comparison that the Standard Performance Evaluation Corpo-
ration are in the process of forming sets of standards to which

benchmarks in certain areas of computer science can be created
to [23].

Previous work reviewing reverse engineering tools has
primarily focused on research tools many with the specific
goal of identification of design patterns [3], [4], [24], [12],
[25], clone detection [26] or a particular scientific aspect
of reverse engineering such as pattern-based recognition of
software constructs [27]. A previous benchmarking approach
for software reverse engineering focused on pattern detection
with arbitary subjective judgements of performance provided
by users [5]. The need for benchmarks within the domain
of reverse engineering to help mature the discipline is also
accepted [6].

This previous work defines the importance of reverse
engineering in industry as well as a research challenge. Our
benchmark is a novel yet complimentary approach to previous
reverse engineering benchmarks, providing a wider set of
target artefacts and tool analysis than those just focused on
design patterns or other specific outputs. As such it provides
a solid framework for the generalised comparison of reverse
engineering tools with the option of extensibility when specific
measurements are required and also allows for integrating
previous efforts into a single benchmark.

IX. CONCLUSION AND FUTURE DIRECTION

In this paper we introduced RED BM, a benchmark for
evaluating and comparing reverse engineering approaches in a
uniform and reproducible manner. To analyse the effectiveness
of RED-BM we applied it to a range of reverse engineering
tools, ranging from open source to comprehensive industrial
tool suites. We demonstrated that RED-BM offers complexity
and depth as it identified clear differences between tool per-
formance. In particular, using the compound measure (CM)
RED-BM was capable of distinguishing and ranking tools
from very low (8.82%) to perfect (100%) performance. The
benchmark is inherently extensible through the definition of

123

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

further measures, changes to weighting to shift focus, and the
creation of new compound measures.

The XMI Parser allows tools to make direct use of reverse
engineering output overcoming the fragmentation issues. The
capability of direct use of reverse engineering output is clearly
demonstrated through the ability for UML to be re-projected
within UMLet, and also used in other tools for further analysis.

The future direction of our work will be to combine reverse
engineering output with other sources of information about
a source corpus, for example mining repository metadata or
requirement documentation. The jcRelationAnalysis tool is
being used as a programmable basis for integration of different
sources of information into a common format of relationships
between source code elements. These relationships, be they
direct and found through reverse engineering, such as gen-
eralisations, or semantic in nature and found through other
means, will be used in combination to form a more complete
understanding of a software project.

Such analysis will aid both general comprehension of
software and also change impact analysis by identifying re-
lationships between elements not immediately obvious at the
code or UML level.

REFERENCES

[1] D. Cutting and J. Noppen, “Working with reverse engineering
output for benchmarking and further use,” in Proceedings
of the 9th International Conference on Software Engineering
Advances. IARIA, Oct. 2014, pp. 584–590. [Online]. Available:
http://www.thinkmind.org/index.php?view=article&articleid=
icsea 2014 21 40 10425

[2] G. Rasool and D. Streitfdert, “A survey on design pattern recovery
techniques,” International Journal of Computing Science Issues, vol. 8,
2011, pp. 251–260.

[3] J. Roscoe, “Looking forwards to going backwards: An assessment of
current reverse engineering,” Current Issues in Software Engineering,
2011, pp. 1–13.

[4] F. Arcelli, S. Masiero, C. Raibulet, and F. Tisato, “A comparison of
reverse engineering tools based on design pattern decomposition,” in
Proceedings of the 2005 Australian Software Engineering Conference.
IEEE, 2005, pp. 262–269.

[5] L. Fulop, P. Hegedus, R. Ferenc, and T. Gyimóthy, “Towards a bench-
mark for evaluating reverse engineering tools,” in Reverse Engineering,
2008. WCRE’08. 15th Working Conference on. IEEE, 2008, pp. 335–
336.

[6] S. E. Sim, S. Easterbrook, and R. C. Holt, “Using benchmarking to
advance research: A challenge to software engineering,” in Proceedings
of the 25th International Conference on Software Engineering. IEEE
Computer Society, 2003, pp. 74–83.

[7] UEA, “Reverse engineering to design benchmark,”
http://www.uea.ac.uk/computing/machine-learning/traceability-
forensics/reverse-engineering, 2013, [Online; accessed May 2013].

[8] R. Koschke, “Software visualization in software maintenance, reverse
engineering, and re-engineering: a research survey,” Journal of Software
Maintenance and Evolution: Research and Practice, vol. 15, no. 2, 2003,
pp. 87–109.

[9] G.-C. Roman and K. C. Cox, “A taxonomy of program visualization
systems,” Computer, vol. 26, no. 12, 1993, pp. 11–24.

[10] N. E. Fenton and S. L. Pfleeger, Software metrics: a rigorous and
practical approach. PWS Publishing Co., 1998.

[11] B. Bellay and H. Gall, “A comparison of four reverse engineering tools,”
in Reverse Engineering, 1997. Proceedings of the Fourth Working
Conference on. IEEE, 1997, pp. 2–11.

[12] I. Philippow, D. Streitferdt, M. Riebisch, and S. Naumann, “An approach
for reverse engineering of design patterns,” Software and Systems
Modeling, vol. 4, no. 1, 2005, pp. 55–70.

[13] OMG et al., “OMG MOF 2 XMI Mapping Specification,”
http://www.omg.org/spec/XMI/2.4.1, 2011, [Online; accessed Decem-
ber 2012].

[14] OMG, “OMG Meta Object Facility (MOF) Core Specification,”
http://www.omg.org/spec/MOF/2.4.1, 2011, [Online; accessed Decem-
ber 2012].

[15] OMG, “Unified modelling language infrastructure specification,”
http://www.omg.org/spec/UML/2.0/, 2005, [Online; accessed December
2012].

[16] ArgoUML, “Argouml,” http://argouml.tigris.org/, 2012, [Online; ac-
cessed December 2012].

[17] A. Gaul, “Function call overhead benchmarks with matlab, octave,
python, cython and c,” arXiv preprint arXiv:1202.2736, 2012.

[18] L. Gherardi, D. Brugali, and D. Comotti, “A java vs. c++ performance
evaluation: a 3d modeling benchmark,” Simulation, Modeling, and
Programming for Autonomous Robots, 2012, pp. 161–172.

[19] P. Olivier, J. Boukhobza, and E. Senn, “On benchmarking embedded
linux flash file systems,” arXiv preprint arXiv:1208.6391, 2012.

[20] Q. Quan and K.-Y. Cai, “Additive-state-decomposition-based tracking
control for tora benchmark,” arXiv preprint arXiv:1211.6827, 2012.

[21] A. Bonutti, F. De Cesco, L. Di Gaspero, and A. Schaerf, “Benchmark-
ing curriculum-based course timetabling: formulations, data formats,
instances, validation, visualization, and results,” Annals of Operations
Research, vol. 194, no. 1, 2012, pp. 59–70.

[22] A. Klein, A. Riazanov, M. M. Hindle, and C. J. Baker, “Benchmarking
infrastructure for mutation text mining,” J. Biomedical Semantics,
vol. 5, 2014, pp. 11–24.

[23] W. Bays and K.-D. Lange, “Spec: driving better benchmarks,” in
Proceedings of the third joint WOSP/SIPEW international conference
on Performance Engineering. ACM, 2012, pp. 249–250.

[24] S. Uchiyama, H. Washizaki, Y. Fukazawa, and A. Kubo, “Design
pattern detection using software metrics and machine learning,” in First
International Workshop on Model-Driven Software Migration (MDSM
2011), 2011, p. 38.

[25] N. Pettersson, W. Lowe, and J. Nivre, “Evaluation of accuracy in design
pattern occurrence detection,” Software Engineering, IEEE Transactions
on, vol. 36, no. 4, 2010, pp. 575–590.

[26] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Com-
parison and evaluation of clone detection tools,” Software Engineering,
IEEE Transactions on, vol. 33, no. 9, 2007, pp. 577–591.

[27] M. Meyer, “Pattern-based reengineering of software systems,” in Re-
verse Engineering, 2006. WCRE’06. 13th Working Conference on.
IEEE, 2006, pp. 305–306.

124

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

