3,548,451 research outputs found

    Quantitative Phase Analysis of the Zrnbmoge Alloys Using Neutron Diffraction Techniques

    Full text link
    Quantitative analysis by neutron diffraction technique can be utilized to measure not only the type of compounds but also the amount of compounds present in a solid or powder system. The technique has been proven for a composition analysis due to offering some advantages particularly for elements with very similar atomic numbers, and for their high penetrating power. A quantitative phase analysis experiment by using neutron diffraction has recently been carried out to determine the amount present of phases in ZrNbMoGe system. The data analysis was obtained by Rietveld refinement method. The result shows that the profiles have a very good fitting (Rwp = 12.62 %, 15.45 % and 16.39 %) with the number of reliable factor among 1.0 and 2.0. The phases of Zr, ZrMo2, Zr3Ge and ZrGe are identified in the specimens. The ZG1 specimen contains of 94.19 %wt of Zr phase, 2.05 %wt of ZrMo2 phase, 3.15 %wt of Zr3Ge and 0.59 %wt of ZrGe phase. Whereas the ZG2 specimen comprises of: 84.45 %wt of Zr phase, 4.16 %wt of ZrMo2 phase, 10.18 %wt of Zr3Ge and 1.20 %wt of ZrGe phase. The volume fraction of the minor phases on specimens shows an increase as addition in Ge content

    Quantitative Analysis of High-Resolution Microendoscopic Images for Diagnosis of Esophageal Squamous Cell Carcinomaï¾ 

    Get PDF
    Background & Aims: High-resolution microendoscopy is an optical imaging technique with the potential to improve the accuracy of endoscopic screening for esophageal squamous neoplasia. Although these microscopic images can be interpreted readily by trained personnel, quantitative image analysis software could facilitate the use of this technology in low-resource settings. In this study, we developed and evaluated quantitative image analysis criteria for the evaluation of neoplastic and non-neoplastic squamous esophageal mucosa. Methods: We performed an image analysis of 177 patients undergoing standard upper endoscopy for screening or surveillance of esophageal squamous neoplasia, using high-resolution microendoscopy, at 2 hospitals in China and at 1 hospital in the United States from May 2010 to October 2012. Biopsy specimens were collected from imaged sites (n = 375), and a consensus diagnosis was provided by 2 expert gastrointestinal pathologists and used as the standard. Results: Quantitative information from the high-resolution images was used to develop an algorithm to identify high-grade squamous dysplasia or invasive squamous cell cancer, based on histopathology findings. Optimal performance was obtained using the mean nuclear area as the basis for classification, resulting in sensitivities and specificities of 93% and 92% in the training set, 87% and 97% in the test set, and 84% and 95% in an independent validation set, respectively. Conclusions: High-resolution microendoscopy with quantitative image analysis can aid in the identification of esophageal squamous neoplasia. Use of software-based image guides may overcome issues of training and expertise in low-resource settings, allowing for widespread use of these optical biopsy technologies

    Quantitative analysis of Clausius inequality

    Full text link
    In the context of driven diffusive systems, for thermodynamic transformations over a large but finite time window, we derive an expansion of the energy balance. In particular, we characterize the transformations which minimize the energy dissipation and describe the optimal correction to the quasi-static limit. Surprisingly, in the case of transformations between homogeneous equilibrium states of an ideal gas, the optimal transformation is a sequence of inhomogeneous equilibrium states.Comment: arXiv admin note: text overlap with arXiv:1404.646
    • …
    corecore